激活函数篇 03 —— ReLU、LeakyReLU、RandomizedLeakkyReLU、PReLU、ELU

本篇文章收录于专栏【机器学习】

以下是激活函数系列的相关的所有内容:

一文搞懂激活函数在神经网络中的关键作用

逻辑回归:Sigmoid函数在分类问题中的应用


整流线性单位函数(Rectified Linear Unit, ReLU),又称修正线性单元,是一种人工神经网络中常用的激活函数,通常指代以斜坡函数及其变种为代表的非线性函数。

ReLU ( x ) = max ⁡ ( 0 , x ) \text{ReLU}(x) = \max(0, x) ReLU(x)=max(0,x)
当输入 x > 0 x > 0 x>0 时,输出等于输入;当输入 x ≤ 0 x \leq 0 x0 时,输出为 0。
在这里插入图片描述
传统的激活函数如 Sigmoid 和 Tanh 存在梯度消失和计算效率较低的问题。ReLU 函数解决了这些问题,具有计算简单、不易出现梯度消失等特点。

应用场景

  • 神经网络隐藏层:引入非线性,使网络能够学习复杂的特征表示。
  • 输出层:在需要输出非负值的回归任务中使用。
  • 特定任务:广泛应用于图像识别、自然语言处理等领域,如 CNN 和 RNN。

函数特点

  • 控制输出范围:输出值限制在 [ 0 , ∞ ) [0, \infty) [0,),防止梯度消失或爆炸。
  • 引入稀疏性:许多输出为零,减少模型复杂度,提高计算效率,防止过拟合。
  • 提供可导性:其导数为:
    ReLU ′ ( x ) = { 1 if  x > 0 0 if  x ≤ 0 \text{ReLU}'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases} ReLU(x)={10if x>0if x0

  • 优点
    • 计算简单,计算效率高。
    • 不易出现梯度消失问题。
    • 引入稀疏性,有助于减少模型复杂度,提高计算效率,防止过拟合。
  • 缺点
    • 神经元死亡:当 x ≤ 0 x \leq 0 x0 时,导数为 0,可能导致神经元死亡。
    • 输出不以 0 为中心,可能影响梯度稳定性。

ReLU 函数的两个变体

Leaky ReLU:是 ReLU 的一个变体,在输入小于等于 0 时有一个小的非零斜率 α \alpha α,从而避免了神经元死亡问题:
Leaky ReLU ( x ) = { x if  x > 0 α x if  x ≤ 0 \text{Leaky ReLU}(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha x & \text{if } x \leq 0 \end{cases} Leaky ReLU(x)={xαxif x>0if x0
α \alpha α 是一个小常数,通常取 0.01。在反向传播过程中,对于LeakyReLU激活函数输入小于 0 0 0 的部分,也可以计算得到梯度(ReLU的值为0),这样就避免了梯度方向锯齿问题。
在这里插入图片描述

Randomized Leaky ReLU: 研究表明 α \alpha α 的取值对于结果是有效的, α \alpha α 的分布满足均值为0,标准差为1的正态分布。有部分论文指出 Randomized LeakyReLU 相比 LeakyReLU 能得更好的结果。究其原因,是随机LeakyReLU小于0部分的随机梯度,为优化方法引入了随机性,这些随机噪声可以帮助参数取值跳出局部最优和鞍点。

以爬山为例,目标是找到山顶(最优解)。 Leaky ReLU 就像是你每次爬山时,每一步的步长是固定的。而RLeakyReLU 则像是你每次爬山时,每一步的步长是随机的。这种随机性有时会让你不小心跨过一个山丘(局部最优),从而找到更高的山顶(更优解),所以听起来有点扯的感觉,运气成分吧。

PReLU: 所以说 α \alpha α 的取值也很重要,但是如果都是随机取值的话未免不太科学,所以就有论文提出将 α \alpha α 作为参数来进行学习,所以多了参数叫 num_parametersinit,前者是可学习的 α \alpha α数量,init是 α \alpha α 的初始值。

torch.nn.PReLU(num_parameters=1, init=0.01, device=None, dtype=None)

ELU,即指数线性单元(Exponential Linear Unit),解决神经网络训练中的一些问题,如梯度消失、非连续性以及输出均值偏离零等问题。

理想的激活函数应满足两个条件:

  1. 输出的分布是零均值的,加快训练速度。
  2. 激活函数是单侧饱和的,更好的收敛。

LeakyReLU满足1不满足2;而ReLU满足2不满足1,ELU 都满足。

ELU:在 x ≤ 0 x \leq 0 x0 时有平滑的指数衰减,解决神经元死亡问题,数学表达式为:
ELU ( x ) = { x if  x > 0 α ( e x − 1 ) if  x ≤ 0 \text{ELU}(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (e^x - 1) & \text{if } x \leq 0 \end{cases} ELU(x)={xα(ex1)if x>0if x0

在这里插入图片描述

特点

缓解梯度消失问题:当 ( x > 0 ),ELU 函数的行为类似于ReLU,允许直接传递输入,从而避免了梯度消失的问题。
对负值的处理更加温和:与ReLU不同的是,当 ( x < 0 ),ELU 不是简单地将它们置为0,而是通过指数函数给出一个非零的输出,这有助于保持网络中的信息流动。
输出的均值更接近于零:由于其在负区间内的特性,ELU 能够帮助神经网络学习到更具有鲁棒性的特征表示,并且倾向于产生更接近于零的输出均值,这对于加速学习过程是有益的。

ELU 的导数在 x > 0 x > 0 x>0 时为1,在 x < 0 x < 0 x<0 时为 α ⋅ e x \alpha \cdot e^x αex。特别地,在 x = 0 x = 0 x=0 处,通常认为其导数是连续的,取左侧或右侧极限值之一。

ELU 适用于需要减少偏移量并加快学习速度的任务,但计算上比ReLU稍微复杂一些,因为它涉及到指数运算。因此,在设计深度学习模型时,需权衡这些因素来决定最适合的激活函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967129.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python Pandas(3):DataFrame

1 介绍 DataFrame 是 Pandas 中的另一个核心数据结构&#xff0c;类似于一个二维的表格或数据库中的数据表。它含有一组有序的列&#xff0c;每列可以是不同的值类型&#xff08;数值、字符串、布尔型值&#xff09;。DataFrame 既有行索引也有列索引&#xff0c;它可以被看做由…

【C++高并发服务器WebServer】-14:Select详解及实现

本文目录 一、BIO模型二、非阻塞NIO忙轮询三、IO多路复用四、Select()多路复用实现 明确一下IO多路复用的概念&#xff1a;IO多路复用能够使得程序同时监听多个文件描述符&#xff08;文件描述符fd对应的是内核读写缓冲区&#xff09;&#xff0c;能够提升程序的性能。 Linux下…

算法兵法全略(译文)

目录 始计篇 谋攻篇 军形篇 兵势篇 虚实篇 军争篇 九变篇 行军篇 地形篇 九地篇 火攻篇 用间篇 始计篇 算法&#xff0c;在当今时代&#xff0c;犹如国家关键的战略武器&#xff0c;也是处理各类事务的核心枢纽。算法的世界神秘且变化万千&#xff0c;不够贤能聪慧…

瑞芯微 Rockchip 系列 RK3588 主流深度学习框架模型转成 rknn 模型教程

前言 在瑞芯微 Rockchip 芯片上进行 NPU 推理&#xff0c;需要先将模型文件转换成 rknn 模型文件&#xff0c;才能执行各种推理任务。本文将介绍如何安装各种工具&#xff0c;并最终实现将各种深度学习框架的模型文件转换成 rknn 文件。 本教程不仅适合 RK3588 平台&#xff…

STM32的HAL库开发---高级定时器---互补输出带死区实验

一、互补输出简介 互补输出&#xff1a;OCx输出高电平&#xff0c;则互补通道OCxN输出低电平。OCx输出低电平&#xff0c;则互补通道OCxN输出高电平。 带死区控制的互补输出&#xff1a;OCx输出高电平时&#xff0c;则互补通道OCxN过一会再输出输出低电平。这个时间里输出的电…

git提交到GitHub问题汇总

1.main->master git默认主分支是maser&#xff0c;如果是按照这个分支名push&#xff0c;GitHub会出现两个branch&#xff0c;与预期不符 解决方案&#xff1a;更改原始主分支名为main git config --global init.defaultBranch main2.git&#xff1a;OpenSSL SSL_read: SS…

【图片合并转换PDF】如何将每个文件夹下的图片转化成PDF并合并成一个文件?下面基于C++的方式教你实现

医院在为患者进行诊断和治疗过程中&#xff0c;会产生大量的医学影像图片&#xff0c;如 X 光片、CT 扫描图、MRI 图像等。这些图片通常会按照检查时间或者检查项目存放在不同的文件夹中。为了方便医生查阅和患者病历的长期保存&#xff0c;需要将每个患者文件夹下的图片合并成…

vite + axios 代理不起作用 404 无效

vite axios 代理不起作用 先看官方示例 export default defineConfig({server: {proxy: {// 字符串简写写法/foo: http://localhost:4567,// 选项写法/api: {target: http://jsonplaceholder.typicode.com,changeOrigin: true,rewrite: (path) > path.replace(/^\/api/, )…

Spring Boot接入Deep Seek的API

1&#xff0c;首先进入deepseek的官网&#xff1a;DeepSeek | 深度求索&#xff0c;单击右上角的API开放平台。 2&#xff0c;单击API keys&#xff0c;创建一个API&#xff0c;创建完成务必复制&#xff01;&#xff01;不然关掉之后会看不看api key&#xff01;&#xff01;&…

Windows 系统下使用 Ollama 离线部署 DeepSeek - R1 模型指南

引言 随着人工智能技术的飞速发展&#xff0c;各类大语言模型层出不穷。DeepSeek - R1 凭借其出色的语言理解和生成能力&#xff0c;受到了广泛关注。而 Ollama 作为一款便捷的模型管理和部署工具&#xff0c;能够帮助我们轻松地在本地环境中部署和使用模型。本文将详细介绍如…

Python+Flask搭建属于自己的B站,管理自己电脑里面的视频文件。支持对文件分类、重命名、删除等操作。

适用场景 个人用户:管理本地图片和视频文件,快速查找和分类。 团队协作:共享文件分类标签,提升团队文件管理效率。 教育机构:用于教学资源管理,方便教师和学生查找资料。 企业应用:作为内部文件管理系统,支持批量操作和分类管理。 功能介绍 文件浏览与播放:用户可以浏…

深入Linux系列之进程地址空间

深入Linux系列之进程地址空间 1.引入 那么在之前的学习中&#xff0c;我们知道我们创建一个子进程的话&#xff0c;我们可以在代码层面调用fork函数来创建我们的子进程&#xff0c;那么fork函数的返回值根据我们当前所处进程的上下文是返回不同的值&#xff0c;它在父进程中返…

前端 CSS 动态设置样式::class、:style 等技巧详解

一、:class 动态绑定类名 v-bind:class&#xff08;缩写为 :class&#xff09;可以动态地绑定一个或多个 CSS 类名。 1. 对象语法 通过对象语法&#xff0c;可以根据条件动态切换类名。 <template><div :class"{ greenText: isActive, red-text: hasError }&…

ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成

摘要 ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍 ArgoCD 的架构、安装步骤,以及如何结合 Helm 和 Kustomize 进行 Kubernetes 自动化部署。 引言 为什么选择 ArgoCD?…

go语言文件和目录

打开和关闭文件 os.Open()函数能够打开一个文件&#xff0c;返回一个*File 和一个 err。操作完成文件对象以后一定要记得关闭文件。 package mainimport ("fmt""os" )func main() {// 只读方式打开当前目录下的 main.go 文件file, err : os.Open(".…

LLM应用实践(1)- 物流状态判断

原文&#xff1a;LLM应用实践&#xff08;1&#xff09;- 物流状态判断 稳定输出 JSON 字符串 为了能够更好的贴合实际的业务场景的应用&#xff0c;我们通常期望大模型返回的数据是 JSON 格式的&#xff0c;这样能够降低对大模型返回内容处理的复杂度&#xff0c;如果返回了…

redis高级数据结构Stream

文章目录 背景stream概述消息 ID消息内容常见操作独立消费创建消费组消费 Stream弊端Stream 消息太多怎么办?消息如果忘记 ACK 会怎样?PEL 如何避免消息丢失?分区 Partition Stream 的高可用总结 背景 为了解决list作为消息队列是无法支持消息多播问题&#xff0c;Redis5.0…

SpringMVC SpringMVC拦截器 拦截器基础知识

1.什么是拦截器 SpringMVC提供了Intercepter拦截器机制&#xff0c;类似于Servlet当中的Filter过滤器&#xff0c;用于拦截用户的请求并作出相应的处理&#xff0c;比如通过拦截器来进行用户权限验证或者用来判断用户是否登录。SpringMVC拦截器是可插拔式的设计&#xff0c;需…

TAPEX:通过神经SQL执行器学习的表格预训练

摘要 近年来&#xff0c;语言模型预训练的进展通过利用大规模非结构化文本数据取得了巨大成功。然而&#xff0c;由于缺乏大规模高质量的表格数据&#xff0c;在结构化表格数据上应用预训练仍然是一个挑战。本文提出了TAPEX&#xff0c;通过在一个合成语料库上学习神经SQL执行…

Matlab机械手碰撞检测应用

本文包含三个部分&#xff1a; Matlab碰撞检测的实现URDF文件的制作机械手STL文件添加夹爪 一.Matlab碰撞检测的实现 首先上代码 %% 检测在结构环境中机器人是否与物体之间发生碰撞情况&#xff0c;如何避免&#xff1f; % https://www.mathworks.com/help/robotics/ug/che…