单张照片可生成写实3D头部模型!Adobe提出FaceLift,从单一的人脸图像中重建出360度的头部模型。

FaceLift是Adobe和加州大学默塞德分校推出的单图像到3D头部模型的转换技术,能从单一的人脸图像中重建出360度的头部模型。FaceLift基于两阶段的流程实现:基于扩散的多视图生成模型从单张人脸图像生成一致的侧面和背面视图;生成的视图被输入到GS-LRM重建器中,产出详细的3D高斯表示。

FaceLift能精确保持个体的身份特征,生成具有精细几何和纹理细节的3D头部模型。FaceLift支持视频输入,实现4D新视图合成,能与2D面部重动画技术无缝集成,实现3D面部动画。

相关链接

  • 主页: https://www.wlyu.me/FaceLift

  • GitHub: https://github.com/weijielyu/FaceLift

  • 论文: https://arxiv.org/pdf/2412.17812

论文介绍

FaceLift是一种新颖的前馈方法,可从单张图像快速、高质量地重建 360 度头部。流程首先采用多视图潜在扩散模型,该模型可从单个面部输入生成一致的头部侧面和背面视图。然后,这些生成的视图作为 GS-LRM 重建器的输入,GS-LRM 重建器使用高斯 Splats 生成全面的 3D 表示。为了训练系统,使用了合成的 3D 人体头部资产开发了一个多视图渲染数据集。基于扩散的多视图生成器专门在合成头部图像上进行训练,而 GS-LRM 重建器在 Objaverse 上进行初始训练,然后在合成头部数据上进行微调。FaceLift擅长在重建过程中保留身份和维持视图一致性。尽管仅在合成数据上进行训练,但我们的方法仍表现出对真实世界图像的显著泛化能力。通过大量的定性和定量评估表明FaceLift在 3D 头部重建方面的表现优于最先进的方法,凸显了其实用性和在真实图像上的稳健性能。除了单幅图像重建外,FaceLift还支持视频输入以进行 4D 新颖视图合成,并与 2D 动画技术无缝集成以实现 3D 面部动画。

方法

FaceLift概述。 给定一张人脸图像作为输入,我们训练一个图像调节的多视图扩散模型来生成覆盖整个头部的全新视图。通过利用预先训练的权重和高质量的合成数据,我们的多视图潜在扩散模型可以以高保真度和多视图一致性幻化出人头的未见视图。然后,我们对 GS-LRM 进行微调,它将多视图图像及其相机姿势作为输入,并生成 3D 高斯图块来表示人头。生成的 3D 高斯表示支持全头部全新视图合成。

结果

单幅图像到 3D 头部

FaceLift 是一种前馈方法,它将单个面部图像提升为具有保留身份特征的详细 3D 重建。

视频作为 4D 新视图合成的输入

给定视频作为输入,FaceLift 单独处理每一帧并生成 3D 高斯序列,从而实现 4D 新颖视图合成。

FaceLift 可以与LivePortrait 等 2D 面部动画方法结合,实现 3D 面部动画。

结论

FaceLift是一种前馈方法,可将单个面部图像提升为具有保留身份特征的详细 3D 重建。FaceLift 使用多视图扩散来生成不可观察的视图,并使用 GS-LRM 来重建 3D 高斯图,从而实现高质量的新视图合成。为了克服捕捉现实世界多视图人头图像的困难,渲染了高质量的合成数据进行训练,并表明,尽管仅使用合成数据进行训练,FaceLift 仍可以从现实世界捕获的图像中高保真地重建 3D 头部。与基线相比,FaceLift 生成具有更精细几何和纹理细节的 3D 头部表示,并表现出更好的身份保存能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/966938.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何使用 DataX 连接 Easysearch

DataX DataX 是阿里开源的一款离线数据同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。 本篇主要介绍 DataX 如何将数据写入到 Easysearch,对于各种数据源的连接…

Gemini 2.0模型更新:谷歌最新AI大模型全面开启智能时代

引言 2025年2月5日,谷歌人工智能实验室(Google DeepMind)发布了最新的Gemini 2.0模型系列更新,包括2.0 Flash、Flash-Lite和Pro实验版本。这些AI大模型的发布标志着人工智能技术在性能、效率和多模态能力上的进一步突破&#xff…

Visual Studio 2022 中使用 Google Test

要在 Visual Studio 2022 中使用 Google Test (gtest),可以按照以下步骤进行: 安装 Google Test:确保你已经安装了 Google Test。如果没有安装,可以通过 Visual Studio Installer 安装。在安装程序中,找到并选择 Googl…

基于SpringBoot的校园社交平台

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…

【R语言】数据重塑

一、定义 R语言中,数据重塑(Data Reshaping)是指改变数据框(data frame)或类似结构(如矩阵、列表等)的形状,以适应不同的分析或可视化需求。这通常涉及行和列的重新排列、数据的汇总…

【银河麒麟高级服务器操作系统】系统日志Call trace现象分析及处理全流程

了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:https://product.kylinos.cn 开发者专区:https://developer.kylinos.cn 文档中心:https://document.kylinos.cn 服务器环境以及配置 系统环境 物理机/虚拟机/云…

代码随想录_二叉树

二叉树 二叉树的递归遍历 144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历 // 前序遍历递归LC144_二叉树的前序遍历 class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> result new ArrayList<Integer&g…

科普书《从一到无穷大》的科普知识推翻百年集论

科普书《从一到无穷大》的科普知识推翻百年集论 黄小宁 “我们给两组无穷大数列中的各个数一一配对&#xff0c;如果最后这两组都一个不剩&#xff0c;这两组无穷大就是相等的&#xff1b;如果有一组还有些数没有配出去&#xff0c;这一组就比另一组大些&#xff0c;或者说强些…

算法【Java】—— 动态规划之回文串问题

回文子串 https://leetcode.cn/problems/palindromic-substrings 我们可以使用二维的 dp 表记录所有的子串情况&#xff0c;dp[i][j] 表示 以 i 起始&#xff0c;j 结尾的子串是否是回文串 状态转移方程推导&#xff1a;回文串要求开头和结尾的两个元素必须是相同的&#xff…

【Linux】从零开始:编写你的第一个Linux进度条小程序

Linux相关知识点可以通过点击以下链接进行学习一起加油&#xff01;初识指令指令进阶权限管理yum包管理与vim编辑器GCC/G编译器make与Makefile自动化构建GDB调试器与Git版本控制工具 &#x1f308;个人主页&#xff1a;是店小二呀 &#x1f308;C语言专栏&#xff1a;C语言 &am…

01_Machine Vision_LSI及傅立叶变换

outline 图像分解和线性时不变系统二维傅立叶变换图像采样 图像分解和线性时不变系统 图像数学表达 图像由基本的像素点组成&#xff0c;如果将每一个像素点看作一个脉冲&#xff0c;则每个像素点的值可以看作是脉冲的幅值&#xff0c;这样图像就可以看作是由一系列脉冲组成…

Win11下搭建Kafka环境

目录 一、环境准备 二、安装JDK 1、下载JDK 2、配置环境变量 3、验证 三、安装zookeeper 1、下载Zookeeper安装包 2、配置环境变量 3、修改配置文件zoo.cfg 4、启动Zookeeper服务 4.1 启动Zookeeper客户端验证 4.2 启动客户端 四、安装Kafka 1、下载Kafka安装包…

自动化xpath定位元素(附几款浏览器xpath插件)

在 Web 自动化测试、数据采集、前端调试中&#xff0c;XPath 仍然是不可或缺的技能。虽然 CSS 选择器越来越强大&#xff0c;但面对复杂 DOM 结构时&#xff0c;XPath 仍然更具灵活性。因此&#xff0c;掌握 XPath&#xff0c;不仅能提高自动化测试的稳定性&#xff0c;还能在爬…

尝试一下,交互式的三维计算python库,py3d

py3d是一个我开发的三维计算python库&#xff0c;目前不定期在PYPI上发版&#xff0c;可以通过pip直接安装 pip install py3d 开发这个库主要可视化是想把自己在工作中常用的三维方法汇总积累下来&#xff0c;不必每次重新造轮子。其实现成的python库也有很多&#xff0c;例如…

手机向电脑传输文件方法有哪些?

手机和电脑已经成为我们日常生活和工作中不可或缺的工具&#xff0c;而它们之间的文件传输需求也日益增加。为了帮助大家更高效地完成这一任务&#xff0c;本文将介绍三种常用的手机向电脑传输文件方法&#xff0c;方便您根据不同场景选择合适的方式。 方法1.数据线 当您有数…

【ESP32】ESP-IDF开发 | WiFi开发 | HTTP服务器

1. 简介 1.1 HTTP HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff0c;全称超文本传输协议&#xff0c;用于从网络服务器传输超文本到本地浏览器的传送协议。它可以使浏览器更加高效&#xff0c;使网络传输减少。它不仅保证计算机正确快速地传输超文本文档…

生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 下

生成式聊天机器人 -- 基于Pytorch Global Attention 双向 GRU 实现的SeqToSeq模型 -- 下 训练Masked 损失单次训练过程迭代训练过程 测试贪心解码(Greedy decoding)算法实现对话函数 训练和测试模型完整代码 生成式聊天机器人 – 基于Pytorch Global Attention 双向 GRU 实…

DeepSeeek如何在Window本地部署

一、Ollama Ollama 是一个开源的本地化大语言模型&#xff08;LLM&#xff09;运行工具&#xff0c;专注于简化大模型在本地环境中的部署、管理和交互。它支持多种主流开源模型&#xff08;如 Llama 2、Mistral、Phi-2 等&#xff09;&#xff0c;并提供了命令行和 API 接口&am…

01-SDRAM控制器的设计——案例总概述

本教程重点▷▷▷ 存储器简介。 介绍 SDRAM 的工作原理。 详细讲解SDRAM 控制的Verilog 实现方法。 PLL IP和FIFO IP 的调用&#xff0c;计数器设计&#xff0c;按键边沿捕获&#xff0c;数码管控制。 完成SDRAM控制器应用的完整案例。 Signal Tap 调试方法。 准备工作▷…

实验5 配置OSPFv2验证

实验5 配置OSPFv2验证 1.实验目的 &#xff08;1&#xff09;OSPFv2 验证的类型和意义。 &#xff08;2&#xff09;配置基于区域的 OSPFv2 简单口令验证和 MD5 验证的方法。 &#xff08;3&#xff09;配置基于链路的 OSPFv2 简单口令验证和 MD5 验证的方法。 2.实验准备 配置…