【C++高并发服务器WebServer】-13:多线程服务器开发

在这里插入图片描述

本文目录

  • 一、多线程服务器开发
  • 二、TCP状态转换
  • 三、端口复用

一、多线程服务器开发

服务端代码如下。

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>

struct sockInfo {
    int fd; // 通信的文件描述符
    struct sockaddr_in addr; //客户端的信息
    pthread_t tid;  // 线程号
};

// 先定义好能够同时支持的客户端数量
struct sockInfo sockinfos[128];

void * working(void * arg) {
    // 子线程和客户端通信   cfd 客户端的信息 线程号
    // 获取客户端的信息
    // 参数是void * 类型的,所以需要进行强转
    struct sockInfo * pinfo = (struct sockInfo *)arg;

    char cliIp[16];
    inet_ntop(AF_INET, &pinfo->addr.sin_addr.s_addr, cliIp, sizeof(cliIp));
    unsigned short cliPort = ntohs(pinfo->addr.sin_port);
    printf("client ip is : %s, prot is %d\n", cliIp, cliPort);

    // 接收客户端发来的数据
    char recvBuf[1024];
    while(1) {
        int len = read(pinfo->fd, &recvBuf, sizeof(recvBuf));

        if(len == -1) {
            perror("read");
            exit(-1);
        }else if(len > 0) {
            printf("recv client : %s\n", recvBuf);
        } else if(len == 0) {
            printf("client closed....\n");
            break;
        }
        write(pinfo->fd, recvBuf, strlen(recvBuf) + 1);
    }
    close(pinfo->fd);
    return NULL;
}

int main() {

    // 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);
    if(lfd == -1){
        perror("socket");
        exit(-1);
    }

    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(9999);
    saddr.sin_addr.s_addr = INADDR_ANY;

    // 绑定
    int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
    if(ret == -1) {
        perror("bind");
        exit(-1);
    }

    // 监听
    ret = listen(lfd, 128);
    if(ret == -1) {
        perror("listen");
        exit(-1);
    }

    // 初始化数据,用整个数组的所占字节除以单个元素的大小,得到数组中的总数
    int max = sizeof(sockinfos) / sizeof(sockinfos[0]);
    for(int i = 0; i < max; i++) {
        //将sockinfos[i]这个地址中的所有内存大小都置为0
        bzero(&sockinfos[i], sizeof(sockinfos[i]));
        sockinfos[i].fd = -1; //-1表示是可用的文件描述符
        sockinfos[i].tid = -1;
    }

    // 循环等待客户端连接,一旦一个客户端连接进来,就创建一个子线程进行通信
    while(1) {

        struct sockaddr_in cliaddr;
        int len = sizeof(cliaddr);
        // 接受连接
        int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);

        // 局部变量当循环结束,就会释放,所以可以通过堆malloc来保存数据,但是子线程需要对应的去释放这个堆
        // 定义好结构体指针
        struct sockInfo * pinfo;
        for(int i = 0; i < max; i++) {
            // 从这个数组中找到一个可以用的sockInfo元素
            if(sockinfos[i].fd == -1) {
                pinfo = &sockinfos[i];
                break;
            }
            if(i == max - 1) {
                //也就是i=127的时候,sleep1秒,不然会继续下去创建子线程了
                sleep(1);
                // i--;
                i =  -1;
            }
        }
        pinfo->fd = cfd;

        //不可以用pinfo.addr = cliaddr进行赋值,可以通过里面对应的元素进行赋值
        memcpy(&pinfo->addr, &cliaddr, len);

        // 创建子线程,第四个参数是子线程需要的参数,且类型是 (void *) 类型,但是需要cfd、客户端信息、线程号
        // 所以可把需要的参数封装成一个结构体,然后把结构体传进去,这里就是第四个参数pinfo
        // pthread_t tid得等到pthread_create之后才会有对应的值,所以可以直接用&pinfo->tid来代替,这样可以直接给结构体中的tid进行赋值
        pthread_create(&pinfo->tid, NULL, working, pinfo);
        // void* 类型的指针是一种特殊的指针类型,可以指向任何类型的对象。
        // 也就是可以存储任何类型的指针值,但是不能直接对他进行解引用操作。
        // 在进行使用的时候,必须进行强转,将其转换为正确的类型。


        // 不可以用pthread_join();因为是阻塞的,这样就不能等待下一个客户端进来循环了。
        // 设置线程分离,让当前线程结束之后自己去释放资源,不需要父线程回收。
        pthread_detach(pinfo->tid);
    }

    close(lfd);
    return 0;
}

客户端代码如下:

// TCP通信的客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

int main() {

    // 1.创建套接字
    int fd = socket(AF_INET, SOCK_STREAM, 0);
    if(fd == -1) {
        perror("socket");
        exit(-1);
    }

    // 2.连接服务器端
    struct sockaddr_in serveraddr;
    serveraddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &serveraddr.sin_addr.s_addr);
    serveraddr.sin_port = htons(9999);
    int ret = connect(fd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));

    if(ret == -1) {
        perror("connect");
        exit(-1);
    }
    
    // 3. 通信
    char recvBuf[1024];
    int i = 0;
    while(1) {
        
        sprintf(recvBuf, "data : %d\n", i++);
        
        // 给服务器端发送数据
        //这里+1 是因为要算进去字符换行的结束符,不然会有问题。
        write(fd, recvBuf, strlen(recvBuf)+1);

        int len = read(fd, recvBuf, sizeof(recvBuf));
        if(len == -1) {
            perror("read");
            exit(-1);
        } else if(len > 0) {
            printf("recv server : %s\n", recvBuf);
        } else if(len == 0) {
            // 表示服务器端断开连接
            printf("server closed...");
            break;
        }

        sleep(1);
    }

    // 关闭连接
    close(fd);

    return 0;
}

运行下面代码可以看到效果如图:

在这里插入图片描述

二、TCP状态转换

在这里插入图片描述
主动断开连接的一方,最后进入一个TIME_WAIT状态,这个状态是定时经过两个报文段寿命(2MSL,Maximum Segment Lifetime)之后才会结束。

这里需要搞清楚一个点,假设客户端主动断开连接,当客户端发送FIN报文之后,服务端回一个ACK,然后客户端会进入FIN_WAIT_2状态,这个时候服务端可以继续向客户端发送数据,直到发送完该发送的数据之后,才会向客户端发送FIN报文,然后客户端会进入TIME_WAIT状态,从而经过2MSL断开。

这也就是为什么是四次挥手,而不是像三次握手一样,把ACK和FIN结合起来从而整体变成三次挥手。三次握手的时候是因为双方都希望能够建立连接,所以ACK和SYN可以结合。但是断开连接可能会有某一方“不愿意”,还有需要发送的一个数据。可以理解成单方面的概念。

2MSL是为了保证安全和可靠性,因为有可能客户端回的最后一个ACK可能服务端会没收到,如果客户端立马断开,那么服务端会没断开,那么结束的状态是不完整的。没有接收到ACK,那么服务端会再次发送一个FIN,然后客户端再发一次ACK。

2MSL就是确保另外一方能够接收到ACK。Linux中msl一般是30s。

当 TCP 连接主动关闭方接收到被动关闭方发送的 FIN 和最终的 ACK后,连接的主动关闭方必须处于TIME_WAIT 状态并持续 2MSL 时间。这样就能够让 TCP 连接的主动关闭方在它发送的 ACK 丢失的情况下重新发送最终的 ACK。主动关闭方重新发送的最终 ACK 并不是因为被动关闭方重传了 ACK(它们并不消耗序列号被动关闭方也不会重传),而是因为被动关闭方重传了它的FIN。事实上,被动关闭方总是重传 FIN 直到它收到一个最终的 ACK。

有些程序就是有单方向发送的需求,所以可以用半关闭状态。

当 TCP 链接中A 向B发送 FIN 请求关闭,另一端 B 回应 ACK 之后(A 端进入 FIN WAIT 2状态),并没有立即发送 FIN 给 A,A方处于半连接状态(半开关),此时A可以接收B发送的数据,但是 A已经不能再向B发送数据。

可以通过API来实现半连接半关闭状态。

#include <sys/socket.h>
int shutdown(int sockfd, int how);

sockfd: 需要关闭的socket的描述符。

how: 允许为shutdown操作选择以下几种方式:
SHUT_RD(0): 关闭sockfd上的读功能,此选项将不允许sockfd进行读操作。该套接字不再接收数据,任何当前在套接字接受缓冲区的数据将被无声的丢弃掉。
SHUT_WR(1): 关闭sockfd的写功能,此选项将不允许sockfd进行写操作。进程不能在对此套接字发出写操作。
SHUT_RDWR(2):关闭sockfd的读写功能。相当于调用shutdown两次:首先是以SHUT_RD,然后是SHUT_WR。

使用 close 中止一个连接,但它只是减少描述符的引用计数,并不直接关闭连接,只有当描述符的引用计数为0时才关闭连接。shutdown 不考虑描述符的引用计数,直接关闭描述符。也可选择中止一个方向的连接,只中止读或只中止写。(在使用 fork 时,子进程会继承父进程的文件描述符,因此需要在父子进程中分别关闭不需要的文件描述符,以避免资源泄漏。)

如果有多个进程共享一个套接字,close 每被调用一次,计数减1,直到计数为0时,也就是所用进程都调用了 close,套接字将被释放。

在多进程中如果一个进程调用了 shutdown(sfd,SHUT_RDWR)后,其它的进程将无法进行通信。但如果一个进程 close(sfd)将不会影响到其它进程。

三、端口复用

在Linux中,有一些查看网络相关信息的命令。

netstat:
netstat -a :显示所有的socket
netstat -p :显示正在使用socket的程序的名称
netstat -n :直接使用IP地址,而不通过域名服务器
netstat -t :显示TCP的socket
netstat -u :显示UDP的socket

首先运行下面的server 代码。

#include <stdio.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {

    // 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);

    if(lfd == -1) {
        perror("socket");
        return -1;
    }

    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_addr.s_addr = INADDR_ANY;
    saddr.sin_port = htons(9999);
    
    //int optval = 1;
    //setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval));
     //int optval = 1;
    //setsockopt(lfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval));

    // 绑定
    int ret = bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
    if(ret == -1) {
        perror("bind");
        return -1;
    }

    // 监听
    ret = listen(lfd, 8);
    if(ret == -1) {
        perror("listen");
        return -1;
    }

    // 接收客户端连接
    struct sockaddr_in cliaddr;
    socklen_t len = sizeof(cliaddr);
    int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);
    if(cfd == -1) {
        perror("accpet");
        return -1;
    }

    // 获取客户端信息
    char cliIp[16];
    inet_ntop(AF_INET, &cliaddr.sin_addr.s_addr, cliIp, sizeof(cliIp));
    unsigned short cliPort = ntohs(cliaddr.sin_port);

    // 输出客户端的信息
    printf("client's ip is %s, and port is %d\n", cliIp, cliPort );

    // 接收客户端发来的数据
    char recvBuf[1024] = {0};
    while(1) {
        int len = recv(cfd, recvBuf, sizeof(recvBuf), 0);
        if(len == -1) {
            perror("recv");
            return -1;
        } else if(len == 0) {
            printf("客户端已经断开连接...\n");
            break;
        } else if(len > 0) {
            printf("read buf = %s\n", recvBuf);
        }

        // 小写转大写
        for(int i = 0; i < len; ++i) {
            recvBuf[i] = toupper(recvBuf[i]);
        }

        printf("after buf = %s\n", recvBuf);

        // 大写字符串发给客户端
        ret = send(cfd, recvBuf, strlen(recvBuf) + 1, 0);
        if(ret == -1) {
            perror("send");
            return -1;
        }
    }
    
    close(cfd);
    close(lfd);

    return 0;
}

下面是client代码。

#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

int main() {

    // 创建socket
    int fd = socket(PF_INET, SOCK_STREAM, 0);
    if(fd == -1) {
        perror("socket");
        return -1;
    }

    struct sockaddr_in seraddr;
    inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
    seraddr.sin_family = AF_INET;
    seraddr.sin_port = htons(9999);

    // 连接服务器
    int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));

    if(ret == -1){
        perror("connect");
        return -1;
    }

    while(1) {
        char sendBuf[1024] = {0};
        fgets(sendBuf, sizeof(sendBuf), stdin);

        write(fd, sendBuf, strlen(sendBuf) + 1);

        // 接收
        int len = read(fd, sendBuf, sizeof(sendBuf));
        if(len == -1) {
            perror("read");
            return -1;
        }else if(len > 0) {
            printf("read buf = %s\n", sendBuf);
        } else {
            printf("服务器已经断开连接...\n");
            break;
        }
    }

    close(fd);

    return 0;
}

查看对应的端口占用情况,可以看到是server程序正在占用9999端口。

在这里插入图片描述

然后再运行客户端,再查看一次情况,可以看到下面的情况,有两个server。一个server是用来监听的,一个server是用来通信的(也就是状态是Established的)。

在这里插入图片描述

当我们主动断开服务器之后,再查看一次状态,可以看到服务器的状态还在,但是不会显示server,状态是FIN_WAIT2。并且client的状态变成了Close_WAIT。

在这里插入图片描述
在这里插入图片描述
然后再过一段时间,服务端的信息也会没有了。

在这里插入图片描述
那么继续刚刚的过程,运行server和client,然后退出server,再立即启动server,会发现显示端口已占用,此时查看netstat情况,会发现处于FIN_WAIT_2的一个状态。

在这里插入图片描述

如果继续退出client,这个时候server会从FIN_WAIT_2变成TIME_WAIT状态,然后等待2msl就会退出。

这个时候就需要进行端口复用的设置,把server端中的下面两行代码的注释取消,然后再进行尝试,就可以发现不会显示端口绑定了。

端口复用就是为了解决防止程序服务器突然重启时,之前绑定的端口还没有释放,或者程序突然退出但是没有释放端口。

int optval = 1;
setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval));

int optval = 1;
setsockopt(lfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval));

来看看下面这个函数的作用。

#include <sys/types.h>
#include <sys/socket.h>

// 设置套接字的属性(不仅仅能设置端口复用)
int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t
optlen);

setsockopt 函数用于设置套接字的选项,它允许程序员对套接字的行为进行细粒度的控制。通过指定文件描述符 sockfd,可以针对特定的套接字进行操作。level 参数指定了选项所在的协议级别,例如 SOL_SOCKET 表示在套接字层面上的选项,这通常用于设置通用的套接字行为,如端口复用等。optname 参数指定了要设置的具体选项名称,比如 SO_REUSEADDR 或 SO_REUSEPORT,这些选项分别用于控制地址和端口的复用行为,允许在某些情况下多个套接字绑定到同一个地址和端口,这对于提高服务器的并发处理能力和快速重启服务非常有用。

optval 参数是一个指向值的指针,它指定了选项的具体值,通常是一个整型值,例如 1 表示启用某个选项(如允许复用),而 0 表示禁用该选项。optlen 参数则指定了 optval 参数所指向的值的大小,这在某些情况下用于确保数据的正确传递和解析。通过这些参数的组合,setsockopt 函数能够灵活地调整套接字的行为,以满足应用程序在不同场景下的需求,比如在开发高性能网络服务器时,合理设置这些选项可以显著提升系统的性能和可靠性。

具体可以看看UNIX网络编程这本书对端口复用的解释。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/966780.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

活动预告 | 为 AI 新纪元做好准备:助力安全的业务转型

课程介绍 随着现代办公模式的不断演变和 AI 技术的迅速发展&#xff0c;企业在享受效率提升的同时&#xff0c;也面临着信息安全与数据保护的严峻挑战。在利用 AI 技术释放业务潜力的同时&#xff0c;如何确保数据质量与安全已成为企业发展的关键议题。 在本次线上课程中&…

鸿蒙harmony 手势密码

1.效果图 2.设置手势页面代码 /*** 手势密码设置页面*/ Entry Component struct SettingGesturePage {/*** PatternLock组件控制器*/private patternLockController: PatternLockController new PatternLockController()/*** 用来保存提示文本信息*/State message: string …

紧跟潮流,将 DeepSeek 集成到 VSCode

Visual Studio Code&#xff08;简称 VSCode&#xff09;是一款由微软开发的免费开源代码编辑器&#xff0c;自 2015 年发布以来&#xff0c;凭借其轻便、强大、且拥有丰富扩展生态的特点&#xff0c;迅速成为了全球开发者的首选工具。VSCode 支持多平台操作系统&#xff0c;包…

21.2.6 字体和边框

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 通过设置Rang.Font对象的几个成员就可以修改字体&#xff0c;设置Range.Borders就可以修改边框样式。 【例 21.6】【项目&#xff…

Windows下AMD显卡在本地运行大语言模型(deepseek-r1)

Windows下AMD显卡在本地运行大语言模型 本人电脑配置第一步先在官网确认自己的 AMD 显卡是否支持 ROCm下载Ollama安装程序模型下载位置更改下载 ROCmLibs先确认自己显卡的gfx型号下载解压 替换替换rocblas.dll替换library文件夹下的所有 重启Ollama下载模型运行效果 本人电脑配…

node.js + html + Sealos容器云 搭建简易多人实时聊天室demo 带源码

node.js html Sealos容器云 搭建简易多人实时聊天室demo 带源码 前言功能介绍&#xff08;demo演示&#xff09;sealos官网配置node.js 编写服务端代码前端ui 调用接口整体项目目录部署到服务器 前言 hello哦盆友们&#xff0c;这次我们来十几行代码做一个超简单的多人聊天…

MYSQL索引与视图

一、新建数据库 mysql> create database mydb15_indexstu; mysql> use mydb15_indexstu; 二、新建表 &#xff08;1&#xff09;学生表Student mysql> create table Student(-> Sno int primary key auto_increment,-> Sname varchar(30) not null unique,-…

win10向windows server服务器传输文件

win10向windows server服务器传输文件 遇到无法直接拖动文件进行传输时 解决方案&#xff1a; 1.点击显示选项 2.点击本地资源-详细信息 3.在窗口中选择你需要共享的磁盘 4.然后远程连接到Windows server服务器 5.登录Windows server服务器后&#xff0c;在此电脑下就能看…

【教程】docker升级镜像

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 目录 自动升级 手动升级 无论哪种方式&#xff0c;最重要的是一定要通过-v参数做数据的持久化&#xff01; 自动升级 使用watchtower&#xff0c;可…

HTML应用指南:利用GET请求获取全国盒马门店位置信息

随着新零售业态的发展,门店位置信息的获取变得至关重要。作为新零售领域的先锋,盒马鲜生不仅在商业模式创新上持续领先,还积极构建广泛的门店网络,以支持其不断增长的用户群体。本篇文章,我们将继续探究GET请求的实际应用,我们使用Python的requests库通过GET请求,从盒马…

Linux内核数据结构之链表

对于链表的优缺点,我们对比数组可以说出一些,但在随机存储的情况下,我们会选择链表来处理,而我们使用双向链表时,经常会定义成如下形式: struct list_node {TYPE data;struct list_node *prev,*next; }; 相对应的链表结构如下: 对于该数据结构定义,存在一个局限,整个…

ctf网络安全题库 ctf网络安全大赛答案

此题解仅为部分题解&#xff0c;包括&#xff1a; 【RE】&#xff1a;①Reverse_Checkin ②SimplePE ③EzGame 【Web】①f12 ②ezrunner 【Crypto】①MD5 ②password ③看我回旋踢 ④摩丝 【Misc】①爆爆爆爆 ②凯撒大帝的三个秘密 ③你才是职业选手 一、 Re ① Reverse Chec…

250207-MacOS修改Ollama模型下载及运行的路径

在 macOS 上&#xff0c;Ollama 默认将模型存储在 ~/.ollama/models 目录。如果您希望更改模型的存储路径&#xff0c;可以通过设置环境变量 OLLAMA_MODELS 来实现。具体步骤如下&#xff1a; 选择新的模型存储目录&#xff1a;首先&#xff0c;确定您希望存储模型的目标目录路…

C# OpenCvSharp 部署MOWA:多合一图像扭曲模型

目录 说明 效果 项目 代码 下载 参考 C# OpenCvSharp 部署MOWA&#xff1a;多合一图像扭曲模型 说明 算法模型的paper名称是《MOWA: Multiple-in-One Image Warping Model》 ariv链接 https://arxiv.org/pdf/2404.10716 效果 Stitched Image 翻译成中文意思是&…

CPP集群聊天服务器开发实践(一):用户注册与登录

目录 1 客户端用户注册与登录 1.1 主要思想 1.2 网络层 1.3 业务层 1.4 数据层 1.5 测试结果 1 客户端用户注册与登录 1.1 主要思想 实现网络层、业务层、数据层的解耦&#xff0c;提高系统的可维护性。 网络层&#xff1a;主要实现对客户端连接、客户端读写请求的捕获…

ARM嵌入式学习--第十四天(SPI)

SPI -介绍 SPI&#xff08;Serial Peripheral Interface&#xff09;串行外围设备接口。是由Motorola公司开发&#xff0c;用来在微控制器和外围设备芯片之间提供一个低成本&#xff0c;易使用的接口。这样接口可以用来连接存储器、AD转换器、DA转换器、实时时钟、LCD驱动器、…

在大型语言模型(LLM)框架内Transformer架构与混合专家(MoE)策略的概念整合

文章目录 传统的神经网络框架存在的问题一. Transformer架构综述1.1 transformer的输入1.1.1 词向量1.1.2 位置编码&#xff08;Positional Encoding&#xff09;1.1.3 编码器与解码器结构1.1.4 多头自注意力机制 二.Transformer分步详解2.1 传统词向量存在的问题2.2 详解编解码…

GRU 和 LSTM 公式推导与矩阵变换过程图解

GRU 和 LSTM 公式推导与矩阵变换过程图解 GRULSTM 本文的前置篇链接: 单向/双向&#xff0c;单层/多层RNN输入输出维度问题一次性解决 GRU GRU&#xff08;Gate Recurrent Unit&#xff09;是循环神经网络&#xff08;RNN&#xff09;的一种&#xff0c;可以解决RNN中不能长期…

Redis存储⑤Redis五大数据类型之 List 和 Set。

目录 1. List 列表 1.1 List 列表常见命令 1.2 阻塞版本命令 1.3 List命令总结和内部编码 1.4 List典型使用场景 1.4.1 消息队列 1.4.2 分频道的消息队列 1.4.3 微博 Timeline 2. Set 集合 2.1 Set 集合常见命令 2.2 Set 集合间命令 2.3 Set命令小结和内部编码 2.…

JS实现灯光闪烁效果

在 JS中&#xff0c;我们可以实现灯光闪烁效果&#xff0c;这里主要用 setInterval 和 clearInterval 两个重要方法。 效果图 源代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>灯闪烁效果<…