康谋方案 | BEV感知技术:多相机数据采集与高精度时间同步方案

随着自动驾驶技术的快速发展,车辆准确感知周围环境的能力变得至关重要。BEV(Bird's-Eye-View,鸟瞰图)感知技术,以其独特的视角和强大的数据处理能力,正成为自动驾驶领域的一大研究热点。

一、BEV感知技术概述

BEV感知技术,是一种从鸟瞰图视角(俯视图)出发的环境感知方法。与传统的正视图相比,BEV视角具有尺度变化小、视角遮挡少的显著优势,有助于网络对目标特征的一致性表达。基于这样的优势,可以更有效的对车辆周围环境进行感知。

图1:BEV 感知图

因此,在自动驾驶感知任务中,BEV感知算法通常包括分类、检测、分割、跟踪、预测、计划和控制等多个子任务,共同构建起一个完整的感知框架。

BEV感知算法的数据输入主要有图像和点云两种形式。根据数据源不同,BEV算法主要分为BEV Camera(纯视觉)、BEV LiDAR(基于激光雷达)和BEV Fusion(多模态融合)三类。其中,图像数据具有纹理丰富、成本低的优势,此外,基于图像的任务、基础模型相对成熟和完善,比较容易扩展到 BEV 感知算法中。

为了更好的训练BEV Camera感知算法,往往需要先搭建一个高质量的数据集。而搭建一套BEV感知数据采集系统,通常包括以下几个关键环节:

1. 硬件选型与集成:选合适的摄像头和计算采集平台,集成稳定系统。

2. 数据采集:在实际环境中采集图像数据,覆盖不同场景、光照和天气。

3. 时间同步:确保不同传感器数据时间精确同步,是后续算法训练的必要前提。

4. 系统调试和部署:调试系统确保组件协同工作,部署到实际应用环境。

因此,在实际搭建过程中,常会遇到技术复杂性高、成本投入大、数据质量与时间同步实现难、系统稳定性与可靠性要求高等挑战。针对这些问题,康谋推出一套BEV Camera数据采集方案,能高效搭建高质量的BEV感知数据集,加速算法研发和训练。

二、BEV Camera数据采集系统方案

BEV Camera数据系统采集方案以BRICKplus为核心系统平台,通过扩展PCIe Slot ETH6000模块连接6个iDS相机,利用GPS接收模块获取卫星时钟信号,提供XTSS时间同步服务,并支持13路(g)PTP以太网接口,确保高精度时间同步。

BRICKplus搭载BRICK STORAGEplus硬盘,提供大容量高速存储,满足高带宽数据采集需求,确保数据的完整性可靠性

图2:系统集成

三、数据采集

在BEV Camera数据采集方案中,难点在于如何同步多相机的采集动作、确保数据的高精度时间同步以及高效传输。因此,在整个软件方面,我们采用ROS+PEAK SDK方案进行深度集成,实现了多相机的参数配置、数据采集与传输。

为了更灵活应对实际采集环境需求,对相机(如曝光时间、帧率和分辨率等)参数进行了统一管理和存储,这些参数可在节点启动时通过配置文件动态加载,为相机的初始化提供了灵活性。

图3:相机参数配置

为实现多相机的同步采集和高效传输,我们利用了ROS的多线程和节点管理功能。通过为每个相机创建独立的采集线程,并启动采集循环,确保了每个相机的采集过程独立且高效。引入全局控制信号与信号处理机制,确保了统一管理所有相机的采集和同步结束状态。

图4:相机实时可视化

四、时间同步

为了实现多相机的时间同步,一般有两种方式:软时间同步和硬件时间同步。软时间同步主要依赖于软件层面的算法和协议来实现时间同步。其精度通常在微秒级别,适用于对时间同步精度要求不是较高的场景。

图5:多相机软件时间同步

为了应对时间同步精度要求较高的采集场景,如自动驾驶和高精度测量等。在BEV Camera数据采集方案中,进一步支持相机进行硬件时间同步。通过XTSS软件可以有效管理数采平台的时间同步功能,能够快速轻便配备各个传感器的时间同步配置。

图6:XTSS 时间同步管理

通过GPS模块提供高精度的时间基准,并利用支持硬件时间戳的以太网接口直接捕获数据包的时间戳。其时间同步精度可以达到纳秒级别,具备高稳定性,不受软件和网络延迟影响。

图7:多相机硬件时间同步

五、总结

在自动驾驶技术的快速发展中,BEV Camera数据采集系统的构建至关重要。通过采用BRICKplus平台,结合PCIe Slot ETH6000模块和iDS相机,我们实现了多相机的高效数据采集和存储。通过ROS+PEAK SDK的深度集成,实现了多相机的参数配置、数据采集与传输。利用GPS接收模块和XTSS时间同步服务,确保了多相机的高精度时间同步

康谋的BEV Camera数据采集方案有效解决了多相机同步采集和高精度时间同步的难题,还提供了灵活的相机参数配置和高效的数据传输,能够满足自动驾驶和高精度测量等场景的需求。


 我是分析自动驾驶技术的康谋

期待与您的进一步交流。

时间同步方案 - 高精度时间同步方案 | (g)PTP以太网时间同步方案 | 高精度硬件晶振时间同步 | 康谋科技https://keymotek.com/solution_time-synchronization/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/966684.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp实现人脸识别(不使用三方插件)

uniapp实现人脸识别 内容简介功能实现上传身份证进行人脸比对 遇到的问题 内容简介 1.拍摄/相册将身份证照片上传到接口进行图片解析 2.使用live-pusher组件拍摄人脸照片,上传接口与身份证人脸进行比对 功能实现 上传身份证 先看下效果 点击按钮调用chooseImage…

Unity游戏(Assault空对地打击)开发(7) 爆炸效果

效果 准备 首先请手搓一个敌军基地。 然后添加一个火焰特效插件或者自建。 爆炸脚本编写 新建一个脚本命名为Explode。 无需挂载到对象上。 首先是全部代码。 using System.Collections; using System.Collections.Generic; using System.Linq; using TMPro; using UnityEngine…

PlanLLM: 首个支持开放词汇与封闭集任务的跨模态视频程序规划框架

2025年1月7号,由杨德杰、赵子敬、刘洋联合提出PlanLLM,一种基于可微调大型语言模型(LLM)的跨模态联合学习框架,用于解决视频程序规划任务。通过引入LLM增强规划模块和互信息最大化模块,PlanLLM突破了现有方…

链表(LinkedList) 1

上期内容我们讲述了顺序表,知道了顺序表的底层是一段连续的空间进行存储(数组),在插入元素或者删除元素需要将顺序表中的元素整体移动,时间复杂度是O(n),效率比较低。因此,在Java的集合结构中又引入了链表来解决这一问…

[手机Linux] onepluse6T 系统重新分区

一,刷入TWRP 1. 电脑下载 Fastboot 工具(解压备用)和对应机型 TWRP(.img 后缀文件,将其放入前面解压的文件夹里) 或者直接这里下载:TWRP 2. 将手机关机,长按音量上和下键 开机键 进入 fastbo…

活动预告 |【Part1】Microsoft 安全在线技术公开课:安全性、合规性和身份基础知识

课程介绍 通过参加“Microsoft 安全在线技术公开课:安全性、合规性和身份基础知识”活动提升你的技能。在本次免费的介绍性活动中,你将获得所需的安全技能和培训,以创造影响力并利用机会推动职业发展。你将了解安全性、合规性和身份的基础知识…

从零开始玩转Docker:轻松开启容器化之旅

一、什么是 Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。简单来说,Docker 就像是一个超级 “快递箱”&#xff0c…

为何实现大语言模型的高效推理以及充分释放 AI 芯片的计算能力对于企业级落地应用来说,被认为具备显著的研究价值与重要意义?

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ AI 芯片:为人工智能而生的 “大脑” AI 芯片,又称人工智能加速器或计算卡,是专为加速人工智能应用,特别是深度学习任务设计的专用集成电路(A…

软件模拟I2C案例(寄存器实现)

引言 在经过前面对I2C基础知识的理解,对支持I2C通讯的EEPROM芯片M24C02的简单介绍以及涉及到的时序操作做了整理。接下来,我们就正式进入该案例的实现环节了。本次案例是基于寄存器开发方式通过软件模拟I2C通讯协议,然后去实现相关的需求。 阅…

【redis】数据类型之hash

Redis中的Hash数据类型是一种用于存储键值对集合的数据结构。与Redis的String类型不同,Hash类型允许你将多个字段(field)和值(value)存储在一个单独的key下,从而避免了将多个相关数据存储为多个独立的key。…

5.2Internet及其作用

5.2.1Internet概述 Internet称为互联网,又称英特网,始于1969年的美国ARPANET(阿帕网),是全球性的网络。 互连网指的是两个或多个不同类型的网络通过路由器等网络设备连接起来,形成一个更大的网络结构。互连…

深度学习模型蒸馏技术的发展与应用

随着人工智能技术的快速发展,大型语言模型和深度学习模型在各个领域展现出惊人的能力。然而,这些模型的规模和复杂度也带来了显著的部署挑战。模型蒸馏技术作为一种优化解决方案,正在成为连接学术研究和产业应用的重要桥梁。本文将深入探讨模…

网络与数据安全

目录 数据加密对称加密(Symmetric Encryption)非对称加密(Asymmetric Encryption)哈希算法(Hash Functions)数字签名(Digital Signature)密钥管理(Key Management&#x…

< OS 有关 > 利用 google-drive-ocamlfuse 工具,在 Ubuntu 24 系统上 加载 Google DRIVE 网盘

Created by Dave On 8Feb.2025 起因: 想下载 StableDiffusion,清理系统文件时把 i/o 搞到 100%,已经删除到 apt 缓存,还差 89MB,只能另想办法。 在网上找能不能挂在 Google 网盘,百度网盘,或 …

05vue3实战-----配置项目代码规范

05vue3实战-----配置项目代码规范 1.集成editorconfig配置2.使用prettier工具2.1安装prettier2.2配置.prettierrc文件:2.3创建.prettierignore忽略文件2.4VSCode需要安装prettier的插件2.5VSCod中的配置2.6测试prettier是否生效 3.使用ESLint检测3.1VSCode需要安装E…

【漫话机器学习系列】084.偏差和方差的权衡(Bias-Variance Tradeoff)

偏差和方差的权衡(Bias-Variance Tradeoff) 1. 引言 在机器学习模型的训练过程中,我们常常面临一个重要的挑战:如何平衡 偏差(Bias) 和 方差(Variance),以提升模型的泛…

23.PPT:校摄影社团-摄影比赛作品【5】

目录 NO12345​ NO6 NO7/8/9/10​ 单元格背景填充表格背景填充文本框背景填充幻灯片背景格式设置添加考生文件夹下的版式 NO12345 插入幻灯片和放入图片☞快速:插入→相册→新建相册→文件→图片版式→相框形状→调整边框宽度左下角背景图片:视图→…

OpenCV:图像修复

目录 简述 1. 原理说明 1.1 Navier-Stokes方法(INPAINT_NS) 1.2 快速行进方法(INPAINT_TELEA) 2. 实现步骤 2.1 输入图像和掩膜(Mask) 2.2 调用cv2.inpaint()函数 2.3 完整代码示例 2.4 运行结果 …

快速建立私有化知识库(私有化训练DeepSeek,通过ollama方式)

简介 什么?!老是有人问你需求,不同版本的需求你记不清还得去扒拉过程文档、设计文档? 什么?!领导会询问功能使用情况、用户相关数据,你每次还得手动查询反馈? 什么?&…

python脚本实现windows电脑内存监控内存清理(类似rammap清空工作集功能)

import ctypes import psutil import time import sys import os from datetime import datetime import pyautogui# 检查管理员权限 def is_admin():try:return ctypes.windll.shell32.IsUserAnAdmin()except:return False# 内存清理核心功能 def cleanup_memory(aggressivene…