DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力,不过该模型是闭源的。

DeepSeek-R1 paper title
今天,我们深入探讨由 DeepSeek 发布的突破性研究论文,该论文介绍了 DeepSeek-R1。这篇题为《DeepSeek-R1:通过强化学习激发大语言模型的推理能力》的论文,展示了一种前沿的开源推理模型,以及使用大规模强化学习技术训练此类模型的详细方法。

回顾:大语言模型训练过程

在这里插入图片描述

在深入探讨这篇论文之前,让我们简要回顾一下大语言模型的训练过程。通常,大语言模型要经过三个主要训练阶段:

  • 预训练:在这个阶段,大语言模型在大量文本和代码上进行预训练,以学习通用知识。这一步有助于模型熟练预测序列中的下一个标记。例如,给定 “write a bedtime _” 这样的输入,模型可以用 “story” 等合理的词补全。然而,预训练后,模型在遵循人类指令方面仍存在困难,下一阶段将解决这个问题。
  • 监督微调:在这个阶段,模型在指令数据集上进行微调。数据集中的每个样本都有一个指令 - 响应配对组成,其中响应作为标签。经过这个阶段,模型在遵循指令方面会表现得更好。
  • 强化学习:大语言模型利用反馈进一步优化。一种有效的方法是人类反馈强化学习(RLHF),即根据人类反馈训练模型。但收集大规模、高质量的人类反馈,尤其是针对复杂任务,颇具挑战。因此,另一种常用方法是人工智能反馈强化学习(RLAIF),由人工智能模型提供反馈。要使 RLAIF 有效工作,需要一个能力强大的模型来提供准确反馈。

引入 DeepSeek-R1-Zero 模型

Training DeepSeek-R1-Zero using only RL in post-training, without SFT

本文所探讨的研究省略或部分省略了监督微调阶段。具体来说,为了训练论文中提出的首个模型 DeepSeek-R1-Zero,我们从一个名为 DeepSeek-V3-Base 的预训练模型开始,它有 6710 亿个参数。监督微调阶段被完全省略。为了大规模进行强化学习,研究采用了一种基于规则的强化学习方法,而非标准的依靠人类或人工智能反馈的强化学习方式。

基于规则的强化学习

在这里插入图片描述

所使用的强化学习方法称为组相对策略优化(GRPO),由 DeepSeek 内部开发。

给定一个待训练的模型和一个输入问题,将输入送入模型,会采样得到一组输出。每个输出都包含推理过程和答案。GRPO 方法观察这些采样输出,并通过使用预定义规则为每个输出计算奖励,来训练模型生成更优的选项:

  • 准确性:一组规则用于计算准确性奖励。例如,对于有确定答案的数学问题,我们可以确切检查模型给出的最终答案是否正确。对于有预定义测试用例的代码问题,编译器会根据测试用例生成反馈。
  • 格式:另一类规则用于创建格式奖励。在论文中的下图里,我们可以看到模型被要求如何响应,其推理过程在标签内,答案在标签内。格式奖励确保模型遵循这种格式。

在这里插入图片描述

这种基于规则的机制不使用神经模型生成奖励,简化并降低了训练过程的成本,使其大规模应用成为可能。此外,研究人员发现奖励模型可能会受到奖励作弊问题的影响,即模型找到一种漏洞或意外方式来最大化奖励,但这与预期目标并不相符。

DeepSeek-R1-Zero 性能洞察

现在,让我们来探究一下 DeepSeek-R1-Zero 模型的一些性能表现。
在这里插入图片描述
在论文中的上表里,我们看到了 DeepSeek-R1-Zero 与 OpenAI 的 o1 在推理相关基准测试中的比较。令人印象深刻的是,DeepSeek-R1-Zero 与 o1 相当,在某些情况下甚至超越了它。论文中下面这张有趣的图展示了在 AIME 数据集上训练期间的改进过程。值得注意的是,AIME 上的平均一次通过率大幅提升,从最初的 15.6% 跃升至令人惊叹的 71.0%,达到了与 OpenAI 的 o1 相当的水平!
在这里插入图片描述

DeepSeek-R1-Zero 的自我进化过程

在这里插入图片描述
论文的一个关键发现是模型的自我进化过程,如上图所示。x 轴表示训练步数,y 轴表明随着训练的进行,模型的响应长度增加。通过强化学习,模型在解决推理任务时自然学会分配更多思考时间。令人惊奇的是,这一过程无需任何外部调整。

“顿悟时刻” 现象—— Aha Moment

如果上述内容还不够令人称奇,论文中还提到了 DeepSeek-R1-Zero 的另一个有趣现象 ——“顿悟时刻”。论文中的以下示例展示了这一现象。给定一道数学题,模型开始推理过程。然而,在某个时刻,模型开始重新评估其解决方案。模型学会重新评估其初始方法,并在必要时进行自我纠正。这种非凡的能力在强化学习训练过程中自然显现。
在这里插入图片描述

DeepSeek-R1 模型的训练过程

现在,我们来讨论第二个模型 DeepSeek-R1 的训练过程。但首先,既然我们刚刚看到了 DeepSeek-R1-Zero 卓越的能力,为什么还需要第二个模型呢?

为什么需要 DeepSeek-R1?

主要有两个原因:
在这里插入图片描述

  • 可读性问题:DeepSeek-R1-Zero 的输出往往可读性较差。
  • 语言一致性问题:它经常在单个回答中混合多种语言。

上述问题使得 DeepSeek-R1-Zero 的用户体验欠佳。有趣的是,一项消融研究表明,引导模型使用单一语言会略微损害其性能。与通常使用单一语言的人类不同,该模型通过使用多种语言能更好地表达自己,这一点令人着迷。

DeepSeek-R1 的训练流程

为了解决这些问题,DeepSeek-R1 采用四阶段流程进行训练:

  • 冷启动(阶段 1):从预训练模型 DeepSeek-V3-Base 开始,模型在从 DeepSeek-R1-Zero 收集的少量结果数据集上进行监督微调。这些结果经过验证,质量高且可读性强。这个数据集包含数千个样本,规模相对较小。在这个小规模高质量数据集上进行监督微调,有助于 DeepSeek-R1 缓解初始模型中存在的可读性问题。
  • 推理强化学习(阶段 2):这个阶段应用与前一个模型相同的大规模强化学习方法,以提升模型的推理能力。具体来说,在编程、数学、科学和逻辑推理等任务中,这些任务有明确的解决方案,可为强化学习过程定义奖励规则。
  • 拒绝采样和监督微调(阶段 3):在这个阶段,使用阶段 2 的模型检查点生成大量样本。通过拒绝采样,只保留正确且可读的样本。此外,使用生成式奖励模型 DeepSeek-V3 来决定保留哪些样本。这个阶段还包含了部分 DeepSeek-V3 的训练数据。然后,模型在这个数据集上进行监督微调。这个数据集不仅包含推理相关的问题,还提升了模型在更多领域的能力。
  • 多样化强化学习阶段(阶段 4):这是最后一个阶段,包含多样化的任务。对于像数学这样适用的任务,使用基于规则的奖励。对于其他任务,由大语言模型提供反馈,使模型符合人类偏好。

此外,利用阶段 3 构建的数据集对各种较小的开源模型进行了提炼,提供了具有高推理能力的较小规模替代模型。

DeepSeek-R1 的显著成果

在这里插入图片描述

在本文结尾,我们着重介绍一下免费可用的 DeepSeek-R1 与 OpenAI 的 o1 模型相比取得的显著成果。论文中的上图显示,DeepSeek-R1 不仅与 o1 相当,在某些基准测试中还超越了它。

此外,经过提炼的 320 亿参数模型也展现出了令人瞩目的性能,使其成为具有高推理能力的可行较小规模替代模型。

参考文献和链接

  • 论文页面: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
  • GitHub 页面:GitHub - deepseek-ai/DeepSeek-R1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962580.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

进阶数据结构——高精度运算

目录 前言一、高精度运算的定义与背景二、高精度运算的实现方式三、高精度运算的算法实现四、高精度运算的应用场景五、代码模版(c)六、经典例题1.[高精度加法](https://www.lanqiao.cn/problems/1516/learning/?page1&first_category_id1&name…

MYSQL--一条SQL执行的流程,分析MYSQL的架构

文章目录 第一步建立连接第二部解析 SQL第三步执行 sql预处理优化阶段执行阶段索引下推 执行一条select 语句中间会发生什么? 这个是对 mysql 架构的深入理解。 select * from product where id 1;对于mysql的架构分层: mysql 架构分成了 Server 层和存储引擎层&a…

【4Day创客实践入门教程】Day2 探秘微控制器——单片机与MicroPython初步

Day2 探秘微控制器——单片机与MicroPython初步 目录 Day2 探秘微控制器——单片机与MicroPython初步MicroPython语言基础开始基础语法注释与输出变量模块与函数 单片机基础后记 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机…

动态规划每日一练(四)

一、day1——最长数对链 题目链接&#xff1a; 646. 最长数对链 - 力扣&#xff08;LeetCode&#xff09;646. 最长数对链 - 给你一个由 n 个数对组成的数对数组 pairs &#xff0c;其中 pairs[i] [lefti, righti] 且 lefti < righti 。现在&#xff0c;我们定义一种 跟随…

事务02之锁机制

锁机制 文章目录 锁机制一&#xff1a;MySQL锁的由来与分类1&#xff1a;锁机制的分类 二&#xff1a;共享锁与排他锁1&#xff1a;共享锁(S锁)2&#xff1a;排他锁(X锁)3&#xff1a;锁的释放 二&#xff1a;表级别锁1&#xff1a;元数据锁(了解)2&#xff1a;意向锁3&#xf…

网络工程师 (8)存储管理

一、页式存储基本原理 &#xff08;一&#xff09;内存划分 页式存储首先将内存物理空间划分成大小相等的存储块&#xff0c;这些块通常被称为“页帧”或“物理页”。每个页帧的大小是固定的&#xff0c;例如常见的页帧大小有4KB、8KB等&#xff0c;这个大小由操作系统决定。同…

[EAI-026] DeepSeek-VL2 技术报告解读

Paper Card 论文标题&#xff1a;DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding 论文作者&#xff1a;Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bin…

(动态规划路径基础 最小路径和)leetcode 64

视频教程 1.初始化dp数组&#xff0c;初始化边界 2、从[1行到n-1行][1列到m-1列]依次赋值 #include<vector> #include<algorithm> #include <iostream>using namespace std; int main() {vector<vector<int>> grid { {1,3,1},{1,5,1},{4,2,1}…

cf1000(div.2)

Minimal Coprime最小公倍数 输入&#xff1a; 6 1 2 1 10 49 49 69 420 1 1 9982 44353 输出&#xff1a; 1 9 0 351 1 34371 代码

【单细胞第二节:单细胞示例数据分析-GSE218208】

GSE218208 1.创建Seurat对象 #untar(“GSE218208_RAW.tar”) rm(list ls()) a data.table::fread("GSM6736629_10x-PBMC-1_ds0.1974_CountMatrix.tsv.gz",data.table F) a[1:4,1:4] library(tidyverse) a$alias:gene str_split(a$alias:gene,":",si…

事务04之死锁,锁底层和隔离机制原理

死锁和事务底层原理 文章目录 死锁和事务底层原理一&#xff1a;MySQL中的死锁现象1&#xff1a;何为死锁1.1&#xff1a;死锁的概念1.2&#xff1a;死锁产生的四个必要条件&#xff1a; 2&#xff1a;MySQL的死锁2.1&#xff1a;死锁的触发2.2&#xff1a;MySQL的死锁如何解决…

Maven的单元测试

1. 单元测试的基本概念 单元测试&#xff08;Unit Testing&#xff09; 是一种软件测试方法&#xff0c;专注于测试程序中的最小可测试单元——通常是单个类或方法。通过单元测试&#xff0c;可以确保每个模块按预期工作&#xff0c;从而提高代码的质量和可靠性。 2.安装和配…

VirtualBox:跨磁盘导入已存的vdi磁盘文件顺便测试冷迁移

目录 1.背景 2.目的 3.步骤 3.1 安装在移动硬盘上 3.2.接管现有主机磁盘上的虚拟机 3.3接管迁移到移动硬盘的虚拟机 4. 结论 1.背景 电脑重新做了系统&#xff0c;然后找不到virtualbox的启动程序了&#xff0c;另外电脑磁盘由于存储了其他文件已经爆红&#xff0c;无法…

二级C语言:二维数组每行最大值与首元素交换、删除结构体的重复项、取出单词首字母

目录 一、程序填空 --- 二维数组每行最大值与首元素交换 题目 分析 知识点 --- 交换语句 二、程序修改 --- 删除结构体的重复项 题目 分析 三、程序设计 --- 取出单词首字母 题目 分析 前言 本章讲解&#xff1a;二维数组每行最大值与首元素交换、删除结构体的重复项…

优盘恢复原始容量工具

买到一个优盘&#xff0c;显示32mb&#xff0c;我见过扩容盘&#xff0c;但是这次见到的是缩容盘&#xff0c;把2g的容量缩成32MB了&#xff0c;首次见到。。用芯片查询工具显示如下 ChipsBank(芯邦) CBM2199E 使用以下工具&#xff0c;恢复原始容量。。 其他CMB工具可能不行…

面对企业文件交换难题,镭速跨网文件交换系统是如何解决的?

在当今这个数字化快速发展的时代&#xff0c;企业越来越依赖于数据交换来维持其业务运作。无论是内部网络之间的沟通还是与外部合作伙伴的数据共享&#xff0c;高效且安全的跨网文件交换都显得尤为重要。然而&#xff0c;在实际操作中&#xff0c;许多企业面临着各种各样的挑战…

黑马点评 - 商铺类型缓存练习题(Redis List实现)

首先明确返回值是一个 List<ShopType> 类型那么我们修改此函数并在 TypeService 中声明 queryTypeList 方法&#xff0c;并在其实现类中实现此方法 GetMapping("list")public Result queryTypeList() {return typeService.queryTypeList();}实现此方法首先需要…

计算机毕业设计Python+CNN卷积神经网络高考推荐系统 高考分数线预测 高考爬虫 协同过滤推荐算法 Vue.js Django Hadoop 大数据毕设

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

知识库管理如何推动企业数字化转型与创新发展的深层次探索

内容概要 在当今数字化转型的大背景下&#xff0c;知识库管理日益显现出其作为企业创新发展的核心驱动力的潜力。这种管理方式不仅仅是对信息的存储与检索&#xff0c;更是一种赋能&#xff0c;以提升决策效率和员工创造力。企业能够通过系统地整合和管理各类知识资源&#xf…

【Leetcode】463. 岛屿的周长

一、题目描述 给定一个KaTeX parse error: Undefined control sequence: \x at position 4: row\̲x̲\col的二维网格地图 g r i d grid grid&#xff0c;其中&#xff1a; g r i d [ i ] [ j ] 1 grid[i][j]1 grid[i][j]1表示陆地&#xff0c; g r i d [ i ] [ j ] 0 grid[…