Elasticsearch中的度量聚合:深度解析与实战应用

在大数据和实时分析日益重要的今天,Elasticsearch以其强大的搜索和聚合能力,成为了众多企业和开发者进行数据分析和处理的首选工具。本文将深入探讨Elasticsearch中的度量聚合(Metric Aggregations),展示其如何在数据分析中发挥关键作用,并通过实例让读者领略其魅力。

度量聚合简介

Elasticsearch的聚合分析功能允许用户对数据进行复杂的统计和运算,而度量聚合则是其中最核心、最常用的部分之一。度量聚合主要用于对数值类型的字段进行计算,如求和、平均值、最大值、最小值等。它不仅支持基础的统计运算,还提供了更高级的统计功能,如标准差、百分位数等,极大地丰富了数据分析的维度和深度。

度量聚合的类型与用法
1. 求和(Sum)

求和聚合是最简单的度量聚合之一,用于计算指定字段的总和。这在计算总销售额、总访问量等场景中非常有用。

GET /my_index/_search
{
  "size": 0,
  "aggs": {
    "total_sales": {
      "sum": {
        "field": "sales_amount"
      }
    }
  }
}

上述查询将返回sales_amount字段的总和,size设置为0表示我们不需要返回原始文档,只关心聚合结果。

2. 平均值(Avg)

平均值聚合用于计算指定字段的平均值,适用于评估数据的整体水平,如平均价格、平均访问时长等。

GET /my_index/_search
{
  "size": 0,
  "aggs": {
    "average_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}

通过这段查询,我们可以轻松得到price字段的平均值。

3. 最大值(Max)与最小值(Min)

最大值和最小值聚合分别用于找出指定字段的最大值和最小值,这在寻找数据中的极端值、设定阈值等方面非常实用。

GET /my_index/_search
{
  "size": 0,
  "aggs": {
    "max_price": {
      "max": {
        "field": "price"
      }
    },
    "min_price": {
      "min": {
        "field": "price"
      }
    }
  }
}

这段查询将同时返回price字段的最大值和最小值。

4. 数值概况统计(Stats)

Stats聚合是一种综合性的度量聚合,它可以同时返回最大值、最小值、平均值和总和,为数据的整体分布提供全面的视角。

GET /my_index/_search
{
  "size": 0,
  "aggs": {
    "stats_price": {
      "stats": {
        "field": "price"
      }
    }
  }
}

通过这段查询,我们可以一次性获取price字段的统计数据,极大地方便了数据分析工作。

5. 百分位数(Percentiles)

百分位数聚合用于计算字段值的分布,可以返回指定百分位数的值,如中位数、95百分位数等,这对于理解数据的分布情况非常有帮助。

GET /my_index/_search
{
  "size": 0,
  "aggs": {
    "price_percentiles": {
      "percentiles": {
        "field": "price",
        "percents": [50, 95, 99]
      }
    }
  }
}

这段查询将返回price字段的50百分位数(中位数)、95百分位数和99百分位数,帮助我们了解数据的分布情况。

6. 高级统计(Extended Stats)

Extended Stats聚合比Stats聚合更为强大,它不仅提供了Stats聚合的所有功能,还额外提供了平方和、方差、标准差以及平均值加减两个标准差的区间,为数据的深入分析提供了更多维度的信息。

GET /my_index/_search
{
  "size": 0,
  "aggs": {
    "extended_stats_price": {
      "extended_stats": {
        "field": "price"
      }
    }
  }
}

通过这段查询,我们可以获取price字段的详细统计信息,包括平方和、方差、标准差等,为数据的进一步分析提供了强有力的支持。

度量聚合的实战应用

度量聚合在实际应用中有着广泛的用途。例如,在电商领域,我们可以通过度量聚合计算每个商品的销售总额、平均价格、最高和最低价格,从而评估商品的市场表现;在物流领域,我们可以利用度量聚合计算每个地区的平均配送时间、最长和最短配送时间,以优化配送网络;在金融领域,度量聚合可以用于计算股票的平均价格、最高和最低价格,以及价格的分布情况等。

结语

Elasticsearch的度量聚合功能为数据分析提供了强大的支持,它不仅简单易用,而且功能丰富,能够满足各种复杂的数据分析需求。通过深入理解度量聚合的原理和用法,我们可以更好地利用Elasticsearch进行数据分析,挖掘数据中的价值,为决策提供有力的支持。无论是在电商、物流、金融还是其他领域,度量聚合都将成为我们进行数据分析和处理的重要工具。希望本文能够帮助读者更好地掌握Elasticsearch的度量聚合功能,并在实际工作中灵活应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

讯飞智作 AI 配音技术浅析(二):深度学习与神经网络

讯飞智作 AI 配音技术依赖于深度学习与神经网络,特别是 Tacotron、WaveNet 和 Transformer-TTS 模型。这些模型通过复杂的神经网络架构和数学公式,实现了从文本到自然语音的高效转换。 一、Tacotron 模型 Tacotron 是一种端到端的语音合成模型&#xff…

初始化mysql报错cannot open shared object file: No such file or directory

报错展示 我在初始化msyql的时候报错:mysqld: error while loading shared libraries: libaio.so.1: cannot open shared object file: No such file or directory 解读: libaio包的作用是为了支持同步I/O。对于数据库之类的系统特别重要,因此…

DeepSeek介绍

目录 前言 1.介绍一下你自己 2.什么是CUDA CUDA的核心特点: CUDA的工作原理: CUDA的应用场景: CUDA的开发工具: CUDA的局限性: 3.在AI领域,PTX是指什么 1. PTX 的作用 2. PTX 与 AI 的关系 3. …

python学opencv|读取图像(五十一)使用修改图像像素点上BGR值实现图像覆盖效果

【1】引言 前序学习了图像的得加方法,包括使用add()函数直接叠加BGR值、使用bitwise()函数对BGR值进行按位计算叠加和使用addWeighted()函数实现图像加权叠加至少三种方法。文章链接包括且不限于: python学opencv|读取图像(四十二&#xff…

【硬件介绍】三极管工作原理(图文+典型电路设计)

什么是三极管? 三极管,全称为双极型晶体三极管,是一种广泛应用于电子电路中的半导体器件。它是由三个掺杂不同的半导体材料区域组成的,这三个区域分别是发射极(E)、基极(B)和集电极&…

【解决方案】MuMu模拟器移植系统进度条卡住98%无法打开

之前在Vmware虚拟机里配置了mumu模拟器,现在想要移植到宿主机中 1、虚拟机中的MuMu模拟器12-1是目标系统,对应的目录如下 C:\Program Files\Netease\MuMu Player 12\vms\MuMuPlayer-12.0-1 2、Vmware-虚拟机-设置-选项,启用共享文件夹 3、复…

C++中常用的十大排序方法之1——冒泡排序

成长路上不孤单😊😊😊😊😊😊 【😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于C中常用的排序方法之——冒泡排序的相关…

开源2+1链动模式AI智能名片S2B2C商城小程序:利用用户争强好胜心理促进分享行为的策略研究

摘要:随着互联网技术的快速发展和社交媒体的普及,用户分享行为在企业营销中的作用日益凸显。本文旨在探讨如何利用用户的争强好胜心理,通过开源21链动模式AI智能名片S2B2C商城小程序(以下简称“小程序”)促进用户分享行…

DeepSeek-R1环境搭建推理测试

引子 这两天国货之光DeepSeek-R1火爆出圈,凑个热闹。过来看看 aha moment(顿悟时刻)的神奇,OK,我们开始吧。 一、模型介绍 1月20日,中国AI公司深度求索(DeepSeek)发布的DeepSeek-…

【深度分析】微软全球裁员计划不影响印度地区,将继续增加当地就业机会

当微软的裁员刀锋掠过全球办公室时,班加罗尔的键盘声却愈发密集——这场资本迁徙背后,藏着数字殖民时代最锋利的生存法则。 表面是跨国公司的区域战略调整,实则是全球人才市场的地壳运动。微软一边在硅谷裁撤年薪20万美金的高级工程师&#x…

架构技能(六):软件设计(下)

我们知道,软件设计包括软件的整体架构设计和模块的详细设计。 在上一篇文章(见 《架构技能(五):软件设计(上)》)谈了软件的整体架构设计,今天聊一下模块的详细设计。 模…

unity使用内置videoplayer打包到安卓手机进行视频播放

1.新建UI,新建RawImage在画布当作视频播放的显示载体 2.新建VideoPlayer 3.新建Render Texture作为连接播放器视频显示和幕布的渲染纹理 将Render Texture同时挂载在VideoPlayer播放器和RawImage上。这样就可以将显示的视频内容在RawImage上显示出来了。 问题在于&a…

LLMs之RAG:解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG(Ro

LLMs之RAG:解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG(Router)/Agentic RAG(Multi-Agent)) 目录 解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG…

99.20 金融难点通俗解释:中药配方比喻马科维茨资产组合模型(MPT)

目录 0. 承前1. 核心知识点拆解2. 中药搭配比喻方案分析2.1 比喻的合理性 3. 通俗易懂的解释3.1 以中药房为例3.2 配方原理 4. 实际应用举例4.1 基础配方示例4.2 效果说明 5. 注意事项5.1 个性化配置5.2 定期调整 6. 总结7. 代码实现 0. 承前 本文主旨: 本文通过中…

python算法和数据结构刷题[1]:数组、矩阵、字符串

一画图二伪代码三写代码 LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中)-CSDN博客 算法通关手册(LeetCode) | 算法通关手册(LeetCode) (itcharge.cn) 面试经典 150 题 - 学习计…

EWM 变更库存类型

目录 1 简介 2 配置 3 业务操作 1 简介 一般情况下 EWM 标准收货流程是 ROD(Ready on Dock) --> AFS(Avaiable for Sale),对应 AG 001 --> AG 002,对应库存类型 F1 --> F2。 因业务需要反向进行的时候,AFS --> ROD,AG 002 --> AG 001,库存类型 F2…

B站吴恩达机器学习笔记

机器学习视频地址: 4.5 线性回归中的梯度下降_哔哩哔哩_bilibili 损失函数学习地址: 损失函数选择 选凸函数的话,会收敛到全局最小值。证明凸函数用Hessian矩阵。凸函数定义:两点连线比线上所有点都大。 batch理解&#xff1…

SpringBoot 数据访问(MyBatis)

SpringBoot 数据访问(MyBatis) 向 SQL 语句传参 #{} 形式 #{}:如果传过来的值是字符串类型。那两边会自动加上 单引号。当传递给 #{} 的参数值是非字符串类型(如整数、浮点数、布尔值等),MyBatis 不会为这些值添加引…

【游戏设计原理】93 - 节奏

与“序-破-急”类似的节奏概念广泛存在于全球不同文化和创意领域中。以下是一些常见的节奏框架和理论,它们与“序-破-急”在本质上有相似之处,但体现出不同的风格和应用: 1. 三幕式结构(Three-Act Structure) 来源&a…

蓝桥云客 三羊献瑞

三羊献瑞 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 观察下面的加法算式: 祥 瑞 生 辉 三 羊 献 瑞 -------------------三 羊 生 瑞 气其中,相同的汉字代表相同的数字,…