【PyTorch】6.张量形状操作:在深度学习的 “魔方” 里,玩转张量形状

       

目录

1. reshape 函数的用法

2. transpose 和 permute 函数的使用

4. squeeze 和 unsqueeze 函数的用法

5. 小节


个人主页:Icomi

专栏地址:PyTorch入门

在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进 PyTorch 的世界,探索神经网络与人工智能的奥秘。本系列为PyTorch入门文章,若各位大佬想持续跟进,欢迎与我交流互关。

         咱们已经学习了张量的花式索引操作,它就像一把精巧的工具,让我们能够在数据的 “宝藏库” 里精准地提取和修改信息。我们接下来要学习—— 掌握对张量形状的操作。

        想象一下,我们即将搭建的网络模型就像一座宏伟而复杂的建筑,而数据则是构建这座建筑的基石。这些数据在我们的深度学习世界里,都是以张量的形式存在。在这座 “建筑” 中,不同的楼层(网络层)有着不同的功能和设计,它们之间的数据传递和运算就如同建筑中不同楼层之间的物资运输和协作。

        每一层网络对数据的处理方式都不尽相同,这就导致数据在网络层与层之间流动时,会以不同的形状(shape)进行表现和运算。比如说,有的层可能接收的是二维的张量数据,经过处理后输出一个三维的张量,就像把方形的积木经过加工变成了一个立体的模型

        如果我们不掌握对张量形状的操作,就好比一个建筑工人不熟悉不同建筑材料的尺寸和拼接方式,那么在搭建这座 “网络建筑” 时,各层之间的数据连接就会出现问题,就像积木无法正确拼接,最终导致整个建筑摇摇欲坠。

        为了能够更好地处理网络各层之间的数据连接,顺利搭建出稳固而强大的网络模型,掌握对张量形状的操作就显得尤为重要。接下来,我们就一同深入学习如何巧妙地调整和管理张量的形状,让我们在深度学习的建筑之路上稳步前行。

1. reshape 函数的用法

reshape 函数可以在保证张量数据不变的前提下改变数据的维度,将其转换成指定的形状,在后面的神经网络学习时,会经常使用该函数来调节数据的形状,以适配不同网络层之间的数据传递。

import torch
import numpy as np


def tensor_shape_operations():
    # 创建一个二维张量
    tensor = torch.tensor([[10, 20, 30], [40, 50, 60]])

    # 1. 使用 shape 属性或者 size 方法都可以获得张量的形状
    print(f"使用 shape 属性获取的形状: {tensor.shape},第 0 维大小: {tensor.shape[0]},第 1 维大小: {tensor.shape[1]}")
    print(f"使用 size 方法获取的形状: {tensor.size()},第 0 维大小: {tensor.size(0)},第 1 维大小: {tensor.size(1)}")

    # 2. 使用 reshape 函数修改张量形状
    reshaped_tensor = tensor.reshape(1, 6)
    print(f"修改形状后的张量形状: {reshaped_tensor.shape}")


if __name__ == '__main__':
    tensor_shape_operations()

需要注意的是,转换前后的两个形状元素个数要相同

import torch


def test():

    torch.manual_seed(0)
    data = torch.randint(0, 10, [4, 5])

    # 查看张量的形状
    print(data.shape, data.shape[0], data.shape[1])
    print(data.size(), data.size(0), data.size(1))

    # 修改张量的形状
    new_data = data.reshape(2, 10)
    print(new_data)

    # 注意: 转换之后的形状元素个数得等于原来张量的元素个数
    # new_data = data.reshape(1, 10)
    # print(new_data)

    # 使用-1代替省略的形状
    new_data = data.reshape(5, -1)
    print(new_data)

    new_data = data.reshape(-1, 2)
    print(new_data)


if __name__ == '__main__':
    test()

2. transpose 和 permute 函数的使用

transpose 函数可以实现交换张量形状的指定维度, 例如: 一个张量的形状为 (2, 3, 4) 可以通过 transpose 函数把 3 和 4 进行交换, 将张量的形状变为 (2, 4, 3)

permute 函数可以一次交换更多的维度。

import torch
import numpy as np


def test():

    data = torch.tensor(np.random.randint(0, 10, [3, 4, 5]))
    print('data shape:', data.size())

    # 1. 交换1和2维度
    new_data = torch.transpose(data, 1, 2)
    print('data shape:', new_data.size())

    # 2. 将 data 的形状修改为 (4, 5, 3)
    new_data = torch.transpose(data, 0, 1)
    new_data = torch.transpose(new_data, 1, 2)
    print('new_data shape:', new_data.size())

    # 3. 使用 permute 函数将形状修改为 (4, 5, 3)
    new_data = torch.permute(data, [1, 2, 0])
    print('new_data shape:', new_data.size())


if __name__ == '__main__':
    test()

4. squeeze 和 unsqueeze 函数的用法

squeeze 函数用删除 shape 为 1 的维度,unsqueeze 在每个维度添加 1, 以增加数据的形状

import torch
import numpy as np


def test():

    data = torch.tensor(np.random.randint(0, 10, [1, 3, 1, 5]))
    print('data shape:', data.size())

    # 1. 去掉值为1的维度
    new_data = data.squeeze()
    print('new_data shape:', new_data.size())  # torch.Size([3, 5])

    # 2. 去掉指定位置为1的维度,注意: 如果指定位置不是1则不删除
    new_data = data.squeeze(2)
    print('new_data shape:', new_data.size())  # torch.Size([3, 5])

    # 3. 在2维度增加一个维度
    new_data = data.unsqueeze(-1)
    print('new_data shape:', new_data.size())  # torch.Size([3, 1, 5, 1])


if __name__ == '__main__':
    test()

5. 小节

本小节我们学习了经常使用的关于张量形状的操作,我们用到的主要函数有:

  1. reshape 函数可以在保证张量数据不变的前提下改变数据的维度.
  2. transpose 函数可以实现交换张量形状的指定维度, permute 可以一次交换更多的维度.
  3. view 函数也可以用于修改张量的形状, 但是它要求被转换的张量内存必须连续,所以一般配合 contiguous 函数使用.
  4. squeeze 和 unsqueeze 函数可以用来增加或者减少维度.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/961835.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Brave132 编译指南 Windows 篇:构建与运行(七)

1. 引言 在成功获取 Brave 浏览器 132 版本的源代码之后,构建和启动项目便成为开发流程中至关重要的环节。这一阶段将源代码编译链接成可执行程序,使您能够在本地环境中运行和测试 Brave 浏览器。Windows 平台上的构建过程可能涉及特定的工具配置和环境…

Java-多态(详解)

目录 一、多态的概念 二、多态实现的条件 示例: 分析: 三、关于Java语言中的向上转型和向下转型: 1.向上转型(Upcasting) (1).示例代码1 (2).示例代码2 2.向下转型(Downcasting) (1).…

unity商店插件A* Pathfinding Project如何判断一个点是否在导航网格上?

需要使用NavGraph.IsPointOnNavmesh(Vector3 point) 如果点位于导航网的可步行部分,则为真。 如果一个点在可步行导航网表面之上或之下,在任何距离,如果它不在更近的不可步行节点之上 / 之下,则认为它在导航网上。 使用方法 Ast…

node 爬虫开发内存处理 zp_stoken 作为案例分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 前言 主要说3种我们补环境过后如果用…

python——Django 框架

Django 框架 1、简介 Django 是用python语言写的开源web开发框架,并遵循MVC设计。 Django的**主要目的是简便、快速的开发数据库驱动的网站。**它强调代码复用,多个组件可以很方便的以"插件"形式服务于整个框架,Django有许多功能…

嵌入式知识点总结 Linux驱动 (五)-linux内核

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.内核镜像格式有几种?分别有什么区别? 2.内核中申请内存有哪几个函数?有什么区别? 3.什么是内核空间,用户空间&…

SpringBoot+Vue的理解(含axios/ajax)-前后端交互前端篇

文章目录 引言SpringBootThymeleafVueSpringBootSpringBootVue(前端)axios/ajaxVue作用响应式动态绑定单页面应用SPA前端路由 前端路由URL和后端API URL的区别前端路由的数据从哪里来的 Vue和只用三件套axios区别 关于地址栏url和axios请求不一致VueJSPS…

网络直播时代的营销新策略:基于受众分析与开源AI智能名片2+1链动模式S2B2C商城小程序源码的探索

摘要:随着互联网技术的飞速发展,网络直播作为一种新兴的、极具影响力的媒体形式,正逐渐改变着人们的娱乐方式、消费习惯乃至社交模式。据中国互联网络信息中心数据显示,网络直播用户规模已达到3.25亿,占网民总数的45.8…

将ollama迁移到其他盘(eg:F盘)

文章目录 1.迁移ollama的安装目录2.修改环境变量3.验证 背景:在windows操作系统中进行操作 相关阅读 :本地部署deepseek模型步骤 1.迁移ollama的安装目录 因为ollama默认安装在C盘,所以只能安装好之后再进行手动迁移位置。 # 1.迁移Ollama可…

《Trustzone/TEE/安全从入门到精通-标准版》

CSDN学院课程连接:https://edu.csdn.net/course/detail/39573 讲师介绍 拥有 12 年手机安全、汽车安全、芯片安全开发经验,擅长 Trustzone/TEE/ 安全的设计与开发,对 ARM 架构的安全领域有着深入的研究和丰富的实践经验,能够将复杂的安全知识和处理器架构知识进行系统整…

手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)

手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…

基于 AWS SageMaker 对 DeepSeek-R1-Distilled-Llama-8B 模型的精调与实践

在当今人工智能蓬勃发展的时代,语言模型的性能优化和定制化成为研究与应用的关键方向。本文聚焦于 AWS SageMaker 平台上对 DeepSeek-R1-Distilled-Llama-8B 模型的精调实践,详细探讨这一过程中的技术细节、操作步骤以及实践价值。 一、实验背景与目标 …

三、SysTick系统节拍定时器

3.1 SysTick简介 系统节拍定时器SysTick是ARM Cortex-M0内核提供的一个24位递减定时器,当计数值达到0时产生中断,可以为操作系统和其他管理软件提供固定时间的中断。 当系统节拍定时器被被使能时,定时器从重装值递减计数,到0进中断…

算法每日双题精讲 —— 前缀和(【模板】一维前缀和,【模板】二维前缀和)

在算法竞赛与日常编程中,前缀和是一种极为实用的预处理技巧,能显著提升处理区间和问题的效率。今天,我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。 一、【模板】一维前缀和 题目描述 给定一个长度为 n n n 的整数数组 a a a&…

学习数据结构(2)空间复杂度+顺序表

1.空间复杂度 (1)概念 空间复杂度也是一个数学表达式,表示一个算法在运行过程中根据算法的需要额外临时开辟的空间。 空间复杂度不是指程序占用了多少bytes的空间,因为常规情况每个对象大小差异不会很大,所以空间复杂…

MybatisX插件快速创建项目

一、安装插件 二、创建一个数据表测试 三、IDEA连接Mysql数据库 四、选择MybatiX构造器 五、配置参数 六、项目结构

基于SpringBoot的假期周边游平台的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

Java设计模式:结构型模式→组合模式

Java 组合模式详解 1. 定义 组合模式(Composite Pattern)是一种结构型设计模式,它允许将对象组合成树形结构以表示“部分-整体”的层次。组合模式使得客户端能够以统一的方式对待单个对象和对象集合的一致性,有助于处理树形结构…

FastReport.NET控件篇之富文本控件

简介 FastReport.NET 提供了 RichText 控件,用于在报表中显示富文本内容。富文本控件支持多种文本格式(如字体、颜色、段落、表格、图片等),非常适合需要复杂排版和格式化的场景。 富文本控件(RichText)使用场景不多&#xff0c…

单片机基础模块学习——NE555芯片

一、NE555电路图 NE555也称555定时器,本文主要利用NE555产生方波发生电路。整个电路相当于频率可调的方波发生器。 通过调整电位器的阻值,方波的频率也随之改变。 RB3在开发板的位置如下图 测量方波信号的引脚为SIGHAL,由上面的电路图可知,NE555已经构成完整的方波发生电…