Linux——冯 • 诺依曼体系结构

目录

  • 一、冯•诺依曼体系结构原理
  • 二、内存提高冯•诺依曼体系结构效率的方法
  • 三、当用QQ和朋友聊天时数据的流动过程
  • 四、关于冯诺依曼
  • 五、总结


我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系
在这里插入图片描述
流程:输入设备——存储器——控制器——运算器——存储器——输出设备

一、冯•诺依曼体系结构原理

截至目前,我们所认识的计算机,都是由一个个的硬件组件组成

在这里插入图片描述

我们使用计算机是为了解决生活中的一些事情,具体解决,将我们需要解决的事转换成数据输入计算机中,所以计算机就必须有输入设备。解决后需要让我们得知结果让我们看到,所以计算机必须要有输出设备。计算机通过输入设备得到数据,数据在计算机当中进行一系列的运算后,通过输出设备进行输出,于是就得到了以下流程图。
在这里插入图片描述
但是计算机当中只有算术运算功能和逻辑运算功能是不够的,还需要有控制功能,控制何时从输入设备获取数据,何时输出数据到输出设备等。对应到C语言当中,算术运算就完成一系列的加减乘除,而逻辑运算就对应于一系列的逻辑与逻辑或等,控制功能就对应于C语言当中的判断、循环以及各个函数之间的跳转等等。

在这里插入图片描述后来就将这个具有运算功能以及控制功能的这个模块称为中央处理器,简称CPU。

但是输入设备和输出设备相对于中央处理器来说是非常慢的,于是在当前这个体系整体呈现出来的就是,输入设备和输出设备很慢,而CPU很快,那么最终整个体系所呈现出来的速度将会是很慢的。
所以当前这个体系结构显然是不合适的,于是输入设备和输出设备不能直接与CPU进行交互,而在这中间加入了内存。

在这里插入图片描述

内存有个特点,比输入设备和输出设备要快很多,但是比CPU又要慢。现在内存就处于慢设备和快设备之间,是一个不快也不慢的设备,能够在该体系结构当中就起到一个缓冲的作用。
现在该体系的运行流程就是:用户输入的数据先放到内存当中,CPU读取数据的时候就直接从内存当中读取,CPU处理完数据后又写回内存当中,然后内存再将数据输出到输出设备当中,最后由输出设备进行输出显示。
于是就形成了最终的冯诺依曼体系结构
在这里插入图片描述注意: 这里存储器只是内存,不包括外存。

二、内存提高冯•诺依曼体系结构效率的方法

我们平时写的C代码形成的二进制可执行程序它就是一个文件,相当于是在磁盘上的一个文件,一个文件要运行必须先加载到存储器,磁盘当作输入设备,文件到存储器时,CPU可能正在计算其它的计算,计算完后,开始执行我们磁盘上的代码,相当于把代码提前预先加载到存储器中,所以处理器在运行期间只是刚开始加载了一下,之后都是CPU和存储器在交互。CPU的计算和存储器的加载可以同时进行,就由串行变成并行,从而提高了运算的效率。

内存具有数据存储的能力。虽然内存的大小只有4G/8G,但是既然内存有大小,那么它就有预装数据的能力,而这就是提高该体系结构效率的秘诀。

当一个数据正在被访问时,那么下一次有很大可能会访问其周围的数据。所以当CPU需要获取某一行数据时,内存可以将该行数据之后的数据一同加载进来,而CPU处理数据和内存加载数据是可以同时进行的,这样下次CPU就可以直接从内存当中获取数据。

输出数据的时候也一样,CPU处理完数据后直接将数据放到内存当中,当输出设备需要时再在内存当中获取即可,这也就有了我们平常所说的缓冲区的概念。例如,缓冲区满了才将数据打印到屏幕上,使用fflush函数将缓冲区当中的数据直接输出之类的,都是将内存当中的数据直接拿到输出设备当中进行显示输出。

三、当用QQ和朋友聊天时数据的流动过程

要使用QQ,首先需要联网,而你和你的朋友的电脑都是冯诺依曼体系结构,在你向朋友发送消息这个过程中,你的电脑当中的键盘充当输入设备、显示器和网卡充当输出设备,你朋友的电脑当中的网卡充当输入设备、显示器充当输出设备。
在这里插入图片描述
刚开始你在键盘当中输入消息,键盘将消息加载到内存,此时你的显示器就可以从内存获取消息进而显示在你自己的显示器上,此时你就能在你自己的电脑上看到你所发的消息了。
在键盘将消息加载到内存后,CPU从内存获取到消息后对消息进行各种封装,然后再将其写回内存,此时你的网卡就可以从内存获取已经封装好的消息,然后在网络当中经过一系列处理(这里忽略网络处理细节),之后你朋友的网卡从网络当中获取到你所发的消息后,将该消息加载到内存当中,你朋友的CPU再从内存当中获取消息并对消息进行解包操作,然后将解包好的消息写回内存,最后你朋友的显示器从内存当中获取消息并显示在他的电脑上。
在这里插入图片描述

四、关于冯诺依曼

  • 这里的存储器指的是内存
  • 不考虑缓存情况,这里的CPU只能对内存进行读写,不能访问外设(输入或输出设备)
  • 外设(输入或输出设备)要输入或者输出数据,也只能写入内存或者从内存中读取
  • 所有设备都只能直接和内存打交道

同种设备在不同场景下可能属于输入设备,也可能属于输入设备。

我们经常说CPU当中有寄存器,实际上寄存器不仅仅在CPU当中存在,在其他外设当中也是有寄存器的。例如,当我们敲击键盘时,键盘是先将获取到的内容存储在寄存器当中,然后再通过寄存器将数据写入内存当中。

它们都是独立的个体,在物理层面上,各个硬件单元之间是通过总线连接的,外设与内存之间的总线叫做IO总线,内存与CPU之间的总线叫做系统总线。

五、总结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/961789.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript - Web APIs(下)

日期对象 目标:掌握日期对象,可以让网页显示日期 日期对象:用来表示时间的对象 作用:可以得到当前系统时间 学习路径: 实例化 日期对象方法 时间戳 实例化 目标:能够实例化日期对象 在代码中发…

【make】makefile变量全解

目录 makefile简介变量全解变量基础变量高级使用1. 将变量里的值进行替换后输出2. 使用变量的嵌套使用3. $ 可以组合使用 override 指示符目标指定变量模式变量 总结参考链接 makefile简介 makefile 是一种类似shell的脚本文件,需要make工具进行解释 makefile 内的语…

51单片机入门_02_C语言基础0102

C语言基础部分可以参考我之前写的专栏C语言基础入门48篇 以及《从入门到就业C全栈班》中的C语言部分,本篇将会结合51单片机讲差异部分。 课程主要按照以下目录进行介绍。 文章目录 1. 进制转换2. C语言简介3. C语言中基本数据类型4. 标识符与关键字5. 变量与常量6.…

常见的同态加密算法收集

随着对crypten与密码学的了解,我们将逐渐深入学习相关知识。今天,我们将跟随同态加密的发展历程对相关算法进行简单的收集整理 。 目录 同态加密概念 RSA算法 ElGamal算法 ELGamal签名算法 Paillier算法 BGN方案 Gentry 方案 BGV 方案 BFV 方案…

aws(学习笔记第二十六课) 使用AWS Elastic Beanstalk

aws(学习笔记第二十六课) 使用aws Elastic Beanstalk 学习内容: AWS Elastic Beanstalk整体架构AWS Elastic Beanstalk的hands onAWS Elastic Beanstalk部署node.js程序包练习使用AWS Elastic Beanstalk的ebcli 1. AWS Elastic Beanstalk整体架构 官方的guide AWS…

FastAPI + GraphQL + SQLAlchemy 实现博客系统

本文将详细介绍如何使用 FastAPI、GraphQL(Strawberry)和 SQLAlchemy 实现一个带有认证功能的博客系统。 技术栈 FastAPI:高性能的 Python Web 框架Strawberry:Python GraphQL 库SQLAlchemy:Python ORM 框架JWT&…

C语言连接Mysql

目录 C语言连接Mysql下载 mysql 开发库 方法介绍mysql_init()mysql_real_connect()mysql_query()mysql_store_result()mysql_num_fields()mysql_fetch_fields()mysql_fetch_row()mysql_free_result()mysql_close() 完整代码 C语言连接Mysql 下载 mysql 开发库 方法一&#xf…

嵌入式知识点总结 Linux驱动 (二)-uboot bootloader

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.什么是bootloader? 2.Bootloader的两个阶段 3.uboot启动过程中做了哪些事? 4.uboot和内核kernel如何完成参数传递? 5.为什么要给内核传递…

JVM对象分配内存如何保证线程安全?

大家好,我是锋哥。今天分享关于【JVM对象分配内存如何保证线程安全?】面试题。希望对大家有帮助; JVM对象分配内存如何保证线程安全? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在JVM中,对象的内存分配是通过堆内存进行的。…

利用飞书机器人进行 - ArXiv自动化检索推荐

相关作者的Github仓库 ArXivToday-Lark 使用教程 Step1 新建机器人 根据飞书官方机器人使用手册,新建自定义机器人,并记录好webhook地址,后续将在配置文件中更新该地址。 可以先完成到后续步骤之前,后续的步骤与安全相关&…

OpenCV:在图像中添加噪声(瑞利、伽马、脉冲、泊松)

目录 简述 1. 瑞利噪声 2. 伽马噪声 3. 脉冲噪声 4. 泊松噪声 总结 相关阅读 OpenCV:在图像中添加高斯噪声、胡椒噪声-CSDN博客 OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯-CSDN博客 OpenCV:图像处理中的低通滤波-CSDN博客 OpenCV&…

github制作静态网页

打开gihub并新建仓库 命名仓库:xxx.github.io 点击create repository进行创建 点击蓝色字体“creating a new file”创建文件 文件命名为index.html, 并编写html 右上角提交 找到setttings/pages,修改路径,点击保存,等…

从 SAP 功能顾问到解决方案架构师:破茧成蝶之路

目录 行业瞭望:架构师崭露头角 现状剖析:功能顾问的局限与机遇 能力跃迁:转型的核心要素 (一)专业深度的掘进 (二)集成能力的拓展 (三)知识广度的延伸 &#xff0…

unity学习23:场景scene相关,场景信息,场景跳转

目录 1 默认场景和Assets里的场景 1.1 scene的作用 1.2 scene作为project的入口 1.3 默认场景 2 场景scene相关 2.1 创建scene 2.2 切换场景 2.3 build中的场景,在构建中包含的场景 (否则会认为是失效的Scene) 2.4 Scenes in Bui…

36、【OS】【Nuttx】OSTest分析(2):环境变量测试

背景 2025.1.29 蛇年快乐! 接之前wiki 35、【OS】【Nuttx】OSTest分析(1):stdio测试(五) 已经分析完了第一个测试项,输入输出端口测试,接下来分析下环境变量测试,也比较…

使用Ollama本地部署DeepSeek R1

前言 DeepSeek是一款开源的智能搜索引擎,能够通过深度学习技术提高搜索的智能化水平。如果你正在寻找一种方式来将DeepSeek部署在本地环境中,Ollama是一个非常方便的工具,它允许你在本地快速部署并管理各种基于AI的模型。 在本篇博客中&…

libOnvif通过组播不能发现相机

使用libOnvif库OnvifDiscoveryClient类, auto discovery new OnvifDiscoveryClient(QUrl(“soap.udp://239.255.255.250:3702”), cb.Build()); 会有错误: end of file or no input: message transfer interrupted or timed out(30 sec max recv delay)…

Visual Studio使用GitHub Copilot提高.NET开发工作效率

GitHub Copilot介绍 GitHub Copilot 是一款 AI 编码助手,可帮助你更快、更省力地编写代码,从而将更多精力集中在问题解决和协作上。 GitHub Copilot Free包含哪些功能? 每月 2000 代码补全,帮助开发者快速完成代码编写。 每月 …

HTB:Forest[WriteUP]

连接至HTB服务器并启动靶机 分配IP:10.10.16.21 靶机IP:10.10.10.161 靶机Domain:forest.htb 目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端…

项目集成GateWay

文章目录 1.环境搭建1.创建sunrays-common-cloud-gateway-starter模块2.目录结构3.自动配置1.GateWayAutoConfiguration.java2.spring.factories 3.pom.xml4.注意:GateWay不能跟Web一起引入! 1.环境搭建 1.创建sunrays-common-cloud-gateway-starter模块…