python3+TensorFlow 2.x(二) 回归模型

目录

回归算法

1、线性回归 (Linear Regression)

一元线性回归举例

 2、非线性回归

3、回归分类 


回归算法

回归算法用于预测连续的数值输出。回归分析的目标是建立一个模型,以便根据输入特征预测目标变量,在使用 TensorFlow 2.x 实现线性回归模型时,通常的步骤包括数据预处理、模型构建、训练和评估。

1、线性回归 (Linear Regression)

概述:线性回归是最基本的回归算法之一,假设目标变量与输入特征之间存在线性关系。

模型形式:y=\beta _{0}+\beta _{1}x_{1}+...+\beta _{n}x_{n}+ϵ,其中 y 是目标变量,x​ 是特征,βi是权重,ϵ 是误差项。

一元线性回归举例

实现步骤

导入必要的库
生成或加载数据预处理:使用生成的线性数据集。生成了一个简单的线性关系 y = 2x + 1,并加上了一些噪声来模拟实际的观测数据。np.linspace 生成 100 个从 0 到 10 的点,np.random.normal 用于生成随机噪声。数据处理:使用 X.reshape(-1, 1) 将 X 变成二维数组,以适应 TensorFlow 的输入要求。

构建线性回归模型:使用 tf.keras.Sequential 创建一个简单的线性模型。只使用一个 Dense 层来表示线性回归,其中 input_dim=1 指明输入特征的维度为 1,output_dim=1 表示输出只有一个预测值。        

编译模型:设置损失函数和优化器。使用了 adam 优化器,这是一个常用且效果不错的优化器。损失函数选择 mean_squared_error,这是回归问题中常见的损失函数。

训练模型:使用训练数据来训练模型。model.fit 方法用于训练模型。设置了 200 个 epoch 和10 的批次大小。

评估模型:通过测试数据评估模型性能。model.evaluate 会返回训练集的损失值,用来评估训练过程中的效果.

预测结果:使用训练好的模型进行预测。使用 matplotlib 绘制训练过程中每个 epoch 的损失变化情况,以便观察模型训练的收敛过程,使用 model.predict 来预测训练集上的输出,然后将预测结果与真实数据一起绘制出来,查看模型的拟合效果

import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt

# 1. 生成数据:y = 2x + 1
np.random.seed(42)
X = np.linspace(0, 10, 100)  # 生成100个点,范围是[0, 10]
Y = 2 * X + 1 + np.random.normal(0, 1, X.shape[0])  # y = 2x + 1,加上一些噪声

# 2. 数据预处理:将数据转化为TensorFlow的张量(也可以直接使用NumPy数组)
X_train = X.reshape(-1, 1)  # 特征,转换成二维数组
Y_train = Y.reshape(-1, 1)  # 标签,转换成二维数组

# 3. 构建线性回归模型
model = keras.Sequential([
    keras.layers.Dense(1, input_dim=1)  # 只有一个输入特征,输出一个值
])

# 4. 编译模型:选择损失函数和优化器
model.compile(optimizer='adam', loss='mean_squared_error')

# 5. 训练模型
history = model.fit(X_train, Y_train, epochs=200, batch_size=10, verbose=0)

# 6. 评估模型
loss = model.evaluate(X_train, Y_train)
print(f"Final training loss: {loss}")

# 7. 绘制训练过程中的损失变化
plt.plot(history.history['loss'])
plt.title('Training Loss Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

# 8. 预测结果
Y_pred = model.predict(X_train)

# 9. 可视化真实数据和预测结果
plt.scatter(X_train, Y_train, color='blue', label='Actual Data')
plt.plot(X_train, Y_pred, color='red', label='Predicted Line')
plt.title('Linear Regression with TensorFlow 2')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

 2、非线性回归

创建合成数据集:使用 NumPy 生成从 -3 到 3 的 100 个点,并计算对应的 y 值为sin(x) 加上一些噪声。

划分训练集和测试集:使用 train_test_split 将数据集划分为训练集和测试集,比例为 80% 训练,20% 测试。

构建曲线拟合模型:使用 tf.keras.Sequential 创建一个简单的神经网络模型,包含两个隐藏层,每层有 64 个神经元,激活函数为 ReLU,最后一层为输出层。

编译模型:使用 Adam 优化器和均方误差损失函数编译模型。

训练模型:使用 fit 方法训练模型,设置训练轮数为 200,批次大小为 10。

进行预测:使用 predict 方法对测试集进行预测。可视化预测结果,使用 Matplotlib 绘制实际值和预测值的散点图。

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

# 1. 创建合成数据集
np.random.seed(0)
X = np.linspace(-3, 3, 100)  # 生成从-3到3的100个点
y = np.sin(X) + np.random.normal(0, 0.1, X.shape)  # y = sin(x) + 噪声

# 2. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 3. 构建曲线拟合模型
# 将输入数据转换为二维数组
X_train = X_train.reshape(-1, 1)
X_test = X_test.reshape(-1, 1)

model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=(1,)),  # 隐藏层
    tf.keras.layers.Dense(64, activation='relu'),  # 隐藏层
    tf.keras.layers.Dense(1)  # 输出层
])

# 4. 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')

# 5. 训练模型
model.fit(X_train, y_train, epochs=200, batch_size=10, verbose=0)

# 6. 进行预测
predictions = model.predict(X_test)

# 7. 可视化预测结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test, y_test, color='blue', label='Actual Values')  # 实际值
plt.scatter(X_test, predictions, color='red', label='Predicted Values')  # 预测值
plt.title('Curve Fitting Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid()
plt.show()

3、回归分类 

import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_regression
import matplotlib.pyplot as plt

# 生成回归数据集
X_reg, y_reg = make_regression(n_samples=1000, n_features=1, noise=10, random_state=42)

# 生成分类数据集
X_class, y_class = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)

# 划分训练集和测试集
X_reg_train, X_reg_test, y_reg_train, y_reg_test = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)
X_class_train, X_class_test, y_class_train, y_class_test = train_test_split(X_class, y_class, test_size=0.2, random_state=42)

# 创建线性回归模型
model_reg = tf.keras.Sequential([
    tf.keras.layers.Dense(1, input_shape=(1,))  # 输入特征为 1,输出为 1
])

# 编译模型
model_reg.compile(optimizer='adam', loss='mean_squared_error')

# 训练模型
model_reg.fit(X_reg_train, y_reg_train, epochs=100, batch_size=32, verbose=1)

# 评估模型
loss_reg = model_reg.evaluate(X_reg_test, y_reg_test, verbose=0)
print(f'回归模型测试集损失: {loss_reg:.4f}')

# 可视化回归结果
plt.scatter(X_reg, y_reg, color='blue', label='Data points')
plt.scatter(X_reg_test, model_reg.predict(X_reg_test), color='red', label='Predictions')
plt.title('Linear Regression Results')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.legend()
plt.show()

# 创建逻辑回归模型
model_class = tf.keras.Sequential([
    tf.keras.layers.Dense(1, activation='sigmoid', input_shape=(2,))  # 输入特征为 2,输出为 1
])

# 编译模型
model_class.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model_class.fit(X_class_train, y_class_train, epochs=100, batch_size=32, verbose=1)

# 评估模型
loss_class, accuracy_class = model_class.evaluate(X_class_test, y_class_test, verbose=0)
print(f'分类模型测试集损失: {loss_class:.4f}, 测试集准确率: {accuracy_class:.4f}')

# 可视化分类数据点
plt.scatter(X_class_train[y_class_train == 0][:, 0], X_class_train[y_class_train == 0][:, 1], color='blue', label='Class 0', alpha=0.5)
plt.scatter(X_class_train[y_class_train == 1][:, 0], X_class_train[y_class_train == 1][:, 1], color='red', label='Class 1', alpha=0.5)

# 绘制决策边界
x_min, x_max = X_class[:, 0].min() - 1, X_class[:, 0].max() + 1
y_min, y_max = X_class[:, 1].min() - 1, X_class[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = model_class.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, levels=[0, 0.5, 1], alpha=0.2, colors=['blue', 'red'])
plt.title('Logistic Regression Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()

make_classification 是 sklearn.datasets 模块中的一个函数,用于生成用于分类的合成数据集。可以通过不同的参数来控制生成数据的特性。

参数解释:n_samples: 生成的样本数量。
n_features: 特征的总数。设置为 2,表示每个样本有 2 个特征。
n_informative: 有效特征的数量,这些特征对分类任务有贡献。设置为 2,表示所有特征都是有效特征。
n_redundant: 冗余特征的数量,这些特征是通过线性组合生成的有效特征。设置为 0,表示没有冗余特征。
n_clusters_per_class: 每个类别的聚类数量。设置为 1,表示每个类别只有一个聚类。
random_state: 随机种子,用于确保结果的可重复性。设置为 42。

make_regression 是 sklearn.datasets 模块中的一个函数,用于生成用于回归的合成数据集。

参数解释:n_samples: 生成的样本数量。
n_features: 特征的总数。比如设置为 1,表示每个样本有 1 个特征。
n_informative: 有效特征的数量,这些特征对目标变量有贡献。比如设置为 1,表示所有特征都是有效特征。
n_targets: 目标变量的数量。默认值为 1,表示生成一个目标变量。
bias: 截距项,表示模型的偏置。可以设置为一个常数,比如 0。
noise: 添加到输出中的噪声的标准差。可以设置为一个浮点数,如 0.1表示添加一定的随机噪声。
random_state: 随机种子,用于确保结果的可重复性。可以设置为一个整数,比如 42。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/961747.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI-Edge-TTS:本地化 OpenAI 兼容的文本转语音 API,免费高效!

文本转语音(TTS)技术已经成为人工智能领域的重要一环,无论是语音助手、教育内容生成,还是音频文章创作,TTS 工具都能显著提高效率。今天要为大家介绍的是 OpenAI-Edge-TTS,一款基于 Microsoft Edge 在线文本…

练习(复习)

大家好,今天我们来做几道简单的选择题目来巩固一下最近学习的知识,以便我们接下来更好的学习。 这道题比较简单,我们前面学过,在Java中,一个类只能继承一个父类,但是一个父类可以有多个子类,一个…

Meta推动虚拟现实:Facebook如何进入元宇宙时代

随着科技的不断进步,虚拟现实(VR)与增强现实(AR)技术的快速发展,世界正在逐步迈向一个全新的数字时代——元宇宙。而在这个革命性的转变中,Meta(前身为Facebook)作为全球…

go gin配置air

一、依赖下载 安装最新,且在你工作区下进行安装,我的是D:/GO是我的工作区,所有项目都在目录下的src, go install github.com/air-verse/airlatest 如果出现类似报错: 将图中第三行 github.com/air-verse/air 替换最…

Spring--SpringMVC使用(接收和响应数据、RESTFul风格设计、其他扩展)

SpringMVC使用 二.SpringMVC接收数据2.1访问路径设置2.2接收参数1.param和json2.param接收数据3 路径 参数接收4.json参数接收 2.3接收cookie数据2.4接收请求头数据2.5原生api获取2.6共享域对象 三.SringMVC响应数据3.1返回json数据ResponseBodyRestController 3.2返回静态资源…

FreeRTOS的任务创建和删除

1,任务创建和删除的API函数 任务的创建和删除本质就是调用FreeRTOS的API函数 动态创建任务: 任务的任务控制块以及任务的栈空间所需的内存,均由 FreeRTOS 从 FreeRTOS 管理的堆中分配。 静态创建任务: 任务的任务控制块以及任务的…

通过Ngrok实现内网穿透助力远程开发

在现代软件开发和网络应用的环境下,开发人员常常需要在本地搭建服务器进行调试、测试或演示。然而,传统的端口映射(如使用 NAT 或 SSH 隧道)配置繁琐,且并非所有环境都允许直接暴露本地服务。ngrok 作为一款强大的隧道…

Elasticsearch的索引生命周期管理

目录 说明零、参考一、ILM的基本概念二、ILM的实践步骤Elasticsearch ILM策略中的“最小年龄”是如何计算的?如何监控和调整Elasticsearch ILM策略的性能? 1. **监控性能**使用/_cat/thread_pool API基本请求格式请求特定线程池的信息响应内容 2. **调整…

wx043基于springboot+vue+uniapp的智慧物流小程序

开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…

关于使用PHP时WordPress排错——“这意味着您在wp-config.php文件中指定的用户名和密码信息不正确”的解决办法

本来是看到一位好友的自己建站,所以突发奇想,在本地装个WordPress玩玩吧,就尝试着装了一下,因为之前电脑上就有MySQL,所以在自己使用PHP建立MySQL时报错了。 最开始是我的php启动mysql时有问题,也就是启动过…

批量卸载fnm中已经安装的所有版本

直接上代码 fnm list | awk -F NR>1 {print line} {line$2} | xargs -n 1 -I {} fnm uninstall {}原理 fnm list 列出 fnm 中所有已经安装的 node 版本 awk -F NR>1 {print line} {line$2} 以空格分隔-F {line$2},取从左到右第 2 段(v22.11…

gesp(C++六级)(7)洛谷:P10376:[GESP202403 六级] 游戏

gesp(C六级)(7)洛谷:P10376:[GESP202403 六级] 游戏 题目描述 你有四个正整数 n , a , b , c n,a,b,c n,a,b,c,并准备用它们玩一个简单的小游戏。 在一轮游戏操作中,你可以选择将 n n n 减去 a a a&am…

Microsoft Visual Studio 2022 主题修改(补充)

Microsoft Visual Studio 2022 透明背景修改这方面已经有很多佬介绍过了,今天闲来无事就补充几点细节。 具体的修改可以参考:Microsoft Visual Studio 2022 透明背景修改(快捷方法)_material studio怎么把背景弄成透明-CSDN博客文…

新时代架构SpringBoot+Vue的理解(含axios/ajax)

文章目录 引言SpringBootThymeleafVueSpringBootSpringBootVue(前端)axios/ajaxVue作用响应式动态绑定单页面应用SPA前端路由 前端路由URL和后端API URL的区别前端路由的数据从哪里来的 Vue和只用三件套axios区别 关于地址栏url和axios请求不一致VueJSPS…

【教学类-89-01】20250127新年篇01—— 蛇年红包(WORD模版)

祈愿在2025蛇年里, 伟大的祖国风调雨顺、国泰民安、每个人齐心协力,共同经历这百年未有之大变局时代(国际政治、AI技术……) 祝福亲友同事孩子们平安健康(安全、安全、安全)、巳巳如意! 背景需…

用XAMPP安装PHP环境(Window系统)

视频教程 BV1jA411v791 进入XAMPP官网 Download XAMPP 找到最新版本,64位的下载,一路安装,语言只有英语德语两个(不会德语) 安装好以后启动软件,点Apache,MySql,start 在C:\xampp\…

并发编程 - 线程同步(二)

经过前面对线程同步初步了解,相信大家对线程同步已经有了整体概念,今天我们就来一起看看线程同步的具体方案。 01、ThreadStatic 严格意义上来说这两个并不是实现线程同步方案,而是解决多线程资源安全问题,而我们研究线程同步最终…

回顾:Maven的环境搭建

1、下载apache-maven-3.6.0 **网址:**http://maven.apache.org 然后解压到指定的文件夹(记住文件路径) 2、配置Maven环境 复制bin文件夹 的路径D:\JavaTool\apache-maven-3.6.0\bin 环境配置成功 3、检查是否配置成功 winR 输入cmd 命令行输入mvn -v…

DRF开发避坑指南01

在当今快速发展的Web开发领域,Django REST Framework(DRF)以其强大的功能和灵活性成为了众多开发者的首选。然而,错误的使用方法不仅会导致项目进度延误,还可能影响性能和安全性。本文将从我个人本身遇到的相关坑来给大…

DeepSeek R1:中国AI黑马的崛起与挑战

文章目录 技术突破:从零开始的推理能力进化DeepSeek R1-Zero:纯RL训练的“自我觉醒”DeepSeek R1:冷启动与多阶段训练的平衡之道 实验验证:推理能力的全方位跃升基准测试:超越顶尖闭源模型蒸馏技术:小模型的…