5分钟带你获取deepseek api并搭建简易问答应用

目录

1、获取api

2、获取base_url和chat_model

3、配置模型参数

方法一:终端中临时将加入

方法二:创建.env文件

4、 配置client

5、利用deepseek大模型实现简易问答


        deepseek-v3是截止博文撰写之日,无论是国内还是国际上发布的大模型中表现十分亮眼的模型,这里以deepseek为例,讲解如何获取api_key、base_url、chat_model。

1、获取api

       首先打开deepseek接口的官网:DeepSeek

         点右上角“开放平台”

         新号一般会送10元的余额,左上方会显示你当前余额按照当前的价格所拥有的tokens数量(tokens可以简单的理解为你输入给大模型的提示词+大模型输出的内容之和所占用的字符数,这个后续博客中会细讲分词原理),这个tokens数量可能会随着模型价格变化而变化,不过deepseek的api价格比较便宜,如图上所展示的送给新人的500万tokens数也够个人使用很久了。

        接着,点击左侧的API keys,然后点击创建API key

         一般需要给API key命名用来区分不同的API,比如下图命名为“test”

​        这里需要注意的是,系统生成的API key只有第一次创建时能看到并且复制,此后都无法再次看到,只能看到名字,所以需要大家第一次就将其复制下来,保存到你的文件中,当然如果忘记了也影响不大,重新创建一个就行。

2、获取base_url和chat_model

         同样以deepseek为例,点击2.1.1页面左下角的接口文档,或者直接进入DeepSeek API文档

         进入文档后,在“快速开始”的“首次调用API”中,可以找到base_url和chat_model,如下:

base_url = https://api.deepseek.com/v1

chat_model='deepseek-chat'

 其他平台与deepseek的获取方式差不多

3、配置模型参数

        base_url和chat_model直接定义即可,但api key是关乎着模型是否能够使用的,所以尽量不要把其暴露在模型定理里面,而是把他添加到环境变量里,这里介绍两种方法添加环境变量。

方法一:终端中临时将加入

        在终端中临时将token加入变量,此时该环境变量只在当前终端内有效 !!!所以该种方法需要我们在该终端中运行我们的py脚本。

export api_key="填入你的api token"

        若是想永久加入环境变量,可以对 ~/.bashrc 文件中添加以下内容并保存。

export api_key="填入你的api token"

        此时在代码中获取api 只需要在Python脚本中添加以下代码即可

import os
api_key = os.getenv('api_key')
base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"

方法二:创建.env文件

        终端输入命令临时创建也比较麻烦,而且只在当前终端内有效,而创建.env文件存储api_key则不存在这种问题。

        首先创建.env文件,然后输入以下内容,记得替换成你的token

api_key="your api_key"

同一路径下创建脚本文件,然后在代码中添加以下内容

import os
from dotenv import load_dotenv


# 加载.env文件中的环境变量
load_dotenv()

# 获取特定的环境变量
api_key = os.getenv('api_key')

base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"

4、 配置client

         有了前面的三个参数,我们就可以构造一个client,构造client只需要两个东西:api_key和base_url。

from openai import OpenAI
client = OpenAI(
    api_key = api_key,
    base_url = base_url
)

5、利用deepseek大模型实现简易问答

我们这里使用第二种方式定义api_key,创建.env文件存储api_key后,在.env同一目录下创建脚本文件,填入以下代码:

import os
from dotenv import load_dotenv
from openai import OpenAI
# 加载环境变量
load_dotenv()
# 从环境变量中读取api_key
api_key = os.getenv('api_key')
base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"


client = OpenAI(
    api_key = api_key,
    base_url = base_url
)

        有了这个client,我们就可以去实现各种能力了。

举个简单例子测试一下模型是否配置成功,配置好api的token后,输入以下代码

import os
from dotenv import load_dotenv
from openai import OpenAI

# 加载环境变量
load_dotenv()

# 从环境变量中读取api_key
api_key = os.getenv('api_key')
base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"

client = OpenAI(
    api_key=api_key,
    base_url=base_url
)

try:
    # 发送一个简单的消息到模型
    response = client.chat.completions.create(
        model=chat_model,
        messages=[
            {"role": "system", "content": "你是一个乐于助人的AI助手,能够帮助用户解决各种专业问题."},
            {"role": "user", "content": "你好,介绍下你自己"}
        ]
    )
    
    # 打印模型的回复
    print("Model response:")
    print(response.choices[0].message.content)
except Exception as e:
    print(f"An error occurred: {e}")



结果如下:

         证明配置成功,如果没有回应,检查API key是否配置对了,如果对了可能是平台服务器的原因,等服务器恢复正常就好了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/961280.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

机器学习day4

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测 import numpy as np import torch import torch.nn as nn import torch.optim as optimizer import matplotlib.pyplot as pltclass1_points np.array([[2.1, 1.8],[1.9, 2…

58.界面参数传递给Command C#例子 WPF例子

界面参数的传递,界面参数是如何从前台传送到后台的。 param 参数是从界面传递到命令的。这个过程通常涉及以下几个步骤: 数据绑定:界面元素(如按钮)的 Command 属性绑定到视图模型中的 RelayCommand 实例。同时&#x…

Julius AI 人工智能数据分析工具介绍

Julius AI 是一款由 Casera Labs 开发的人工智能数据分析工具,旨在通过自然语言交互和强大的算法能力,帮助用户快速分析和可视化复杂数据。这款工具特别适合没有数据科学背景的用户,使数据分析变得简单高效。 核心功能 自然语言交互&#x…

【JavaEE进阶】应用分层

目录 🎋序言 🍃什么是应用分层 🎍为什么需要应用分层 🍀如何分层(三层架构) 🎄MVC和三层架构的区别和联系 🌳什么是高内聚低耦合 🎋序言 通过上⾯的练习,我们学习了SpringMVC简单功能的开…

在 Ubuntu22.04 上安装 Splunk

ELK感觉太麻烦了,换个日志收集工具 Splunk 是一种 IT 工具,可帮助在任何设备上收集日志、分析、可视化、审计和创建报告。简单来说,它将“机器生成的数据转换为人类可读的数据”。它支持从虚拟机、网络设备、防火墙、基于 Unix 和基于 Windo…

ES设置证书和创建用户,kibana连接es

1、启动好es 2、进入es容器 docker exec -it es /bin/bash 3、生成ca证书 ./bin/elasticsearch-certutil ca 注:两个红方框位置直接回车 4、生成cert证书 ./bin/elasticsearch-certutil cert --ca elastic-stack-ca.p12 注:前两个红框直接回车&am…

python + ollama 手敲实现私有大模型知识库

在不依赖 LangChain、LlamaIndex 等框架,以及各种知识问答软件的情况下,尽量减少第三方库的使用,仅通过 Ollama 和 NumPy 两个外部库来实现 RAG(Retrieval-Augmented Generation)应用。 一、安装python 下载&#xf…

TypeScript中的函数:类型安全与高级特性

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

EasyExcel使用详解

文章目录 EasyExcel使用详解一、引言二、环境准备与基础配置1、添加依赖2、定义实体类 三、Excel 读取详解1、基础读取2、自定义监听器3、多 Sheet 处理 四、Excel 写入详解1、基础写入2、动态列与复杂表头3、样式与模板填充 五、总结 EasyExcel使用详解 一、引言 EasyExcel 是…

概率论里的特征函数,如何用卷积定理去理解

概率论里的特征函数,如何用卷积定理去理解_哔哩哔哩_bilibili

具身智能技术趋势

参考: 【北京大学-董豪】具身智能技术趋势分析 2024.8 回答了具身智能技术G3、G4的必要性,以及真实数据、仿真数据、互联网数据之间的关系 具身智能趋势 趋势:寻求一个通用路径实现所有的上肢操作 要求:① 低成本 ② 拓展到所有…

新型智慧城市解决方案-3

智慧城市概述 智慧城市是运用物联网、云计算、大数据等现代科技手段,构建集网络化、信息化、智能化于一体的新型城市模式,涵盖智慧管理、智慧产业、智慧民生等核心内容。 智慧城市建设背景 随着城镇化快速发展,城市病问题日益突出&#x…

【云安全】云原生-K8S-搭建/安装/部署

一、准备3台虚拟机 务必保证3台是同样的操作系统! 1、我这里原有1台centos7,为了节省资源和效率,打算通过“创建链接克隆”2台出来 2、克隆之前,先看一下是否存在k8s相关组件,或者docker相关组件 3、卸载原有的docker …

C++的类Class

文章目录 一、C的struct和C的类的区别二、关于OOP三、举例:一个商品类CGoods四、构造函数和析构函数1、定义一个顺序栈2、用构造和析构代替s.init(5);和s.release();3、在不同内存区域构造对象4、深拷贝和浅拷贝5、构造函数和深拷贝的简单应用6、构造函数的初始化列…

HTML<kbd>标签

例子 在文档中将一些文本定义为键盘输入&#xff1a; <p>Press <kbd>Ctrl</kbd> <kbd>C</kbd> to copy text (Windows).</p> <p>Press <kbd>Cmd</kbd> <kbd>C</kbd> to copy text (Mac OS).</p>…

windows下部署安装 ELK,nginx,tomcat日志分析

1.安装包 如上就是elk- windows下部署需要用到的安装包 &#xff08;ps:注意版本需要对应&#xff0c;另外es7版本对应是 jdk8&#xff0c;若更高版本 请自行查询版本对应号&#xff09;。 下载地址&#xff1a; Past Releases of Elastic Stack Software | Elastic 此地址可…

Controller 层优化四步曲

Controller 层优化四步曲 前言 在开发过程中&#xff0c;Controller 层作为系统与外界交互的桥梁&#xff0c;承担着接收请求、解析参数、调用业务逻辑、处理异常等职责。 然而&#xff0c;随着业务复杂度的增加&#xff0c;Controller 层的代码往往会变得臃肿且难以维护。 …

CVE-2025-0411 7-zip 漏洞复现

文章目录 免责申明漏洞描述影响版本漏洞poc漏洞复现修复建议 免责申明 本文章仅供学习与交流&#xff0c;请勿用于非法用途&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任 漏洞描述 此漏洞 &#xff08;CVSS SCORE 7.0&#xff09; 允许远程攻击者绕…

洛谷P1030 [NOIP2001 普及组] 求先序排列(c++)详解

题目链接&#xff1a;P1030 [NOIP2001 普及组] 求先序排列 - 洛谷 | 计算机科学教育新生态 思路&#xff1a; 1.先确定跟节点 2.根据根节点&#xff0c;划分出左右子树 中&#xff1a;BADC 后&#xff1a;BDCA 分析&#xff1a; 根据后序遍历&#xff0…

基于 PyTorch 的深度学习模型开发实战

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 引言 深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域&#xff0c;凭借其强大的特征学习能力&#xff0c;成为人工…