【Linux探索学习】第二十七弹——信号(一):Linux 信号基础详解

Linux学习笔记:

https://blog.csdn.net/2301_80220607/category_12805278.html?spm=1001.2014.3001.5482

前言:

前面我们已经将进程通信部分讲完了,现在我们来讲一个进程部分也非常重要的知识点——信号,信号也是进程间通信的一种,本篇主要讲解信号的概念和信号的几种产生方法及对应的场景

目录

一、引言

二、信号的概念

2.1 什么是信号

2.2 信号的作用

2.3 信号的特点

2.4 常见信号列表

​编辑

三、信号的产生

3.1 前台进程和后台进程

3.2 用户产生信号

3.3 系统产生信号

3.4 软件产生信号

四、信号的处理

4.1 默认处理方式

4.2 自定义信号处理函数

五、总结


一、引言

在 Linux 操作系统中,信号(Signal)是一种进程间通信(IPC,Inter - Process Communication)的机制,它用于通知进程发生了某种异步事件。信号可以来自内核,也可以来自其他进程。进程接收到信号后,会根据信号的类型以及自身的处理方式做出相应的反应。理解信号对于编写健壮的 Linux 程序以及深入理解 Linux 操作系统的运行机制至关重要。

二、信号的概念

2.1 什么是信号

信号是一种软中断,它是一种异步通知机制。当某个特定事件发生时,如用户按下特定组合键、系统资源耗尽、进程异常终止等,系统会向相关进程发送一个信号。每个信号都有一个对应的编号和名称,例如信号 1 表示 SIGHUP(挂起信号),信号 9 表示 SIGKILL(强制终止信号)。

2.2 信号的作用

信号的主要作用是让进程能够对异步事件做出响应。例如,当用户在终端中按下 Ctrl + C 组合键时,系统会向当前前台进程发送 SIGINT 信号,通常进程会接收到这个信号后停止当前正在执行的任务并退出。信号还可以用于进程间的通信,一个进程可以向另一个进程发送信号来通知其执行某些操作。

结合2.1和2.2我们来讲解一个概念:信号是一种软中断,是什么意思呢?当我们往键盘中输入内容时是如何告诉给内核的?ctrl+c又是如何被解释为指令的呢?

我们先来看下面这张图:

        键盘实际上是通过中断来让操作系统知道自己要写入内容的,键盘被按下时,就会触发硬件中断,不同的硬件对应着不同的中断号,中断单元就可以通过它们的中断号将它们与CPU中不同的键位相连,从而使CPU中这个方向的寄存器(32位)特定位置产生电信号,操作系统中有一个叫中断向量表的类似于函数指针结构体的结构,里面保存着访问各种外设的方法,操作系统通过CPU产生的电信号就辨别出要获取哪种硬件的信息,从而通过中断向量表中的方法,将硬件中的信息拷贝到操作系统的文件缓冲区中(操作系统下一切皆文件,且每一个文件都有自己的文件缓冲中区),然后再拷贝到用户缓冲区
       同时比如键盘等外键,操作系统在获取键盘上的信息时会先进行识别,会对数据进行判断,如果是控制进程的比如ctrl+c等组合键就不会往缓冲区中拷贝,我们可以发现我们学习的信号与上面的中断过程很像,其实信号,就是用软件方式,模拟的对讲程的硬件中断,所以信号也被叫做软中断

2.3 信号的特点

  1. 异步性:信号的产生是异步的,与进程的执行顺序无关。进程在运行过程中可能随时收到信号。
  1. 简单性:信号机制相对简单,只需要一个信号编号就可以标识不同的信号。
  1. 有限性:Linux 系统中定义的信号数量是有限的,不同的系统可能略有差异,但通常在几十种左右。

2.4 常见信号列表

信号编号

信号名称

含义

默认处理方式

1

SIGHUP

挂起信号,通常在终端关闭时发送给相关进程

终止进程

2

SIGINT

中断信号,由用户按下 Ctrl + C 组合键产生

终止进程

3

SIGQUIT

退出信号,由用户按下 Ctrl + \ 组合键产生

终止进程并生成核心转储文件

9

SIGKILL

强制终止信号,不能被捕获、阻塞或忽略

立即终止进程

15

SIGTERM

终止信号,通常用于正常终止进程

终止进程

18

SIGCONT

继续信号,用于恢复被暂停的进程

继续执行进程

19

SIGSTOP

停止信号,用于暂停进程,不能被捕获、阻塞或忽略

暂停进程

可以通过kill -l指令查看所有信号

kill -l

三、信号的产生

3.1 前台进程和后台进程

先来科普一个小知识点:前台进程和后台进程,来看下面一个程序

#include<iostream>
#include<unistd.h>
using namespace std;
int main()
{
    while(true)
    {
        cout<<"I am a crazy process"<<endl;
        sleep(1);
    }
    return 0;
}

我们进行编译后会得到一个可执行程序

./myfile

我们这样执行时我们会发现在程序运行的时候,我们输入其它指令比如Is,pwd等都不会有结果,进程还在继续运行,除非用ctrl+c终止掉进程,这样的进程称为前台进程

./myfile &

这种的后面加上地址符的叫做后台进程,后台进程可以被其它进程命令临时打断并执行这个命令,比如我们输入ls指令,进程就会暂停并且输出Is的结果,但是最后需要自己把进程结束掉

Linux中,一次登陆中, 一个终端,一般会配上一个bash,每一个登陆,只允许一个进程是前台进程,可以允许多个进程是后台进程
当./process运行时,输入指令之所以不能运行就是因为此时的前台进程由bash转变为了process

  • 终端占用情况
    • 前台进程:会独占终端,直到进程执行完成或者被挂起,在这期间终端无法接受其他命令输入,用户只能与该进程进行交互。
    • 后台进程:不会占用终端,终端可以继续接受用户输入的其他命令,用户可以在同一个终端中同时启动多个后台进程,并随时切换到其他任务。
  • 运行特性
    • 前台进程:其执行过程会受到用户操作的直接影响,比如用户可以通过键盘输入来中断或暂停进程。如果终端关闭,前台进程通常会被终止,除非进行了特殊的设置。
    • 后台进程:通常是长时间运行的,不受终端关闭的影响,除非明确地对其进行停止或重启操作。它按照自身的逻辑和任务需求在后台持续运行,不会因为用户的一些常规操作而中断。

3.2 用户产生信号

  1. 键盘输入:用户可以通过在终端中按下特定的组合键来产生信号。例如:
    • Ctrl + C:产生 SIGINT 信号,用于中断当前正在运行的进程。比如,我们在终端中运行一个长时间运行的命令while true; do echo "Hello"; sleep 1; done,按下 Ctrl + C 后,该命令对应的进程会接收到 SIGINT 信号并终止。
    • Ctrl + \:产生 SIGQUIT 信号,不仅会终止进程,还会生成核心转储文件(如果系统配置允许,一般在云服务器上是默认关闭的,虚拟机上可能是开启的)。例如,运行一个简单的 C 程序#include <stdio.h> int main() { while(1); return 0; },编译运行后,按下 Ctrl + \,进程会终止并生成核心转储文件(在当前目录下,文件名为 core,具体名称和位置可能因系统配置而异)。(了解即可,这个生成core文件的内容与进程退出部分也有联系,有想了解的可以单独去搜索一下)
  1. 使用 kill 命令:用户可以使用 kill 命令向指定进程发送信号。kill 命令的基本语法是kill [信号编号] 进程ID。例如,要向进程 ID 为 1234 的进程发送 SIGTERM 信号(信号编号为 15),可以在终端中输入kill -15 1234,也可以使用信号名称kill -SIGTERM 1234。如果省略信号编号或名称,默认发送 SIGTERM 信号。

3.3 系统产生信号

  1. 进程异常:当进程发生异常时,如段错误(访问非法内存地址)、除零错误等,系统会向该进程发送相应的信号。
    • 段错误(Segmentation Fault):当进程访问了不属于它的内存区域时,会产生段错误,一般都是野指针问题,系统会向该进程发送 SIGSEGV 信号。例如,下面的 C 代码会导致段错误:
#include <stdio.h>

int main() {

int *ptr = NULL;

*ptr = 10; // 试图向空指针指向的地址写入数据,会引发段错误

return 0;

}

编译运行这段代码,程序会崩溃,并提示 “Segmentation fault”,这是因为进程接收到了 SIGSEGV 信号。

  • 除零错误(Division by Zero):当进程执行除法运算时,如果除数为零,会产生除零错误,系统会向该进程发送 SIGFPE 信号。例如:
#include <stdio.h>

int main()
{
    int a = 10;
    int b = 0;
    int c = a / b; // 除零操作,会引发除零错误
    return 0;
}

运行这段代码,程序会崩溃,并提示 “Floating point exception”,这是因为进程接收到了 SIGFPE 信号。

2. 系统资源相关:当系统资源达到一定阈值时,也可能产生信号。例如,当进程使用的内存超过了系统限制时,系统可能会发送 SIGKILL 信号来终止该进程,以防止系统内存耗尽。不过,这种情况通常需要系统进行相关的配置和监控。

3.4 软件产生信号

  1. 使用 kill 函数:在 C 语言编程中,可以使用 kill 函数向指定进程发送信号。kill 函数的原型可以用man手册查看,如下:
 man 2 kill

其中,pid 是目标进程的 ID,sig 是要发送的信号编号。例如,下面的代码演示了如何使用 kill 函数向另一个进程发送 SIGTERM 信号:

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
int main()
{
    pid_t target_pid = 1234; // 假设目标进程ID为1234
    int result = kill(target_pid, SIGTERM);
    if (result == -1)
    {
        perror("kill failed");
    }
    else
    {
        printf("SIGTERM sent to process %d\n", target_pid);
    }
    return 0;
}

在实际使用中,需要将target_pid替换为真实的目标进程 ID。

2. 使用 raise 函数:进程可以使用 raise 函数向自身发送信号。raise 函数的原型也可以通过man手册来查看,如下:

man raise

其中,sig 是要发送的信号编号。例如,下面的代码演示了如何使用 raise 函数向自身发送 SIGINT 信号:

#include <stdio.h>
#include <signal.h>
int main()
{
    int result = raise(SIGINT);
    if (result != 0)
    {
        perror("raise failed");
    }
    else
    {
        printf("SIGINT sent to self\n");
    }
    return 0;
}

运行这段代码,进程会接收到自己发送的 SIGINT 信号并终止。

四、信号的处理

4.1 默认处理方式

每个信号都有一个默认的处理方式,常见的默认处理方式包括:

  1. 终止进程:如 SIGINT、SIGTERM 等信号的默认处理方式是终止进程。
  1. 生成核心转储文件并终止进程:例如 SIGQUIT 信号,在终止进程的同时会生成核心转储文件,该文件包含了进程在收到信号时的内存状态等信息,可用于调试程序。
  1. 忽略信号:有些信号(如 SIGCHLD,子进程状态改变时发送给父进程的信号)的默认处理方式是忽略。

4.2 自定义信号处理函数

进程可以通过调用 signal 函数或 sigaction 函数来设置自定义的信号处理函数。

  1. signal 函数:signal 函数的原型如下:
man signal

其中,signum 是信号编号,handler 是指向信号处理函数的指针。例如,下面的代码演示了如何使用 signal 函数设置 SIGINT 信号的自定义处理函数:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum)
{
    printf("Received SIGINT. Cleaning up...\n");
    // 在这里进行一些清理工作,如关闭文件、释放资源等
    _exit(0); // 退出进程
}
int main()
{
    signal(SIGINT, signal_handler);
    while (1)
    {
        printf("Running...\n");
        sleep(1);
    }
    return 0;
}

在这个例子中,当进程接收到 SIGINT 信号时,会调用signal_handler函数,而不是默认的终止进程操作。

2. sigaction 函数:sigaction 函数比 signal 函数提供了更丰富的功能,它可以设置信号处理函数、处理信号时的掩码、信号的标志等。sigaction 函数的原型如下:

#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

struct sigaction {

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *, void *);

sigset_t sa_mask;

int sa_flags;

void (*sa_restorer)(void);

};

其中,signum 是信号编号,act 是指向新的信号处理动作的结构体指针,oldact 是指向旧的信号处理动作的结构体指针(如果不需要获取旧的处理动作,可以设为 NULL)。例如,下面的代码演示了如何使用 sigaction 函数设置 SIGINT 信号的自定义处理函数:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum)
{
    printf("Received SIGINT. Cleaning up...\n");
    // 在这里进行一些清理工作,如关闭文件、释放资源等
    _exit(0); // 退出进程
}
int main()
{
    struct sigaction new_action, old_action;
    new_action.sa_handler = signal_handler;
    sigemptyset(&new_action.sa_mask);
    new_action.sa_flags = 0;
    sigaction(SIGINT, &new_action, &old_action);
    while (1)
    {
        printf("Running...\n");
        sleep(1);
    }
    return 0;
}

这段代码与使用 signal 函数的例子功能类似,但使用 sigaction 函数可以更灵活地配置信号处理方式。

五、总结

信号是 Linux 系统中一种重要的进程间通信和异步事件通知机制。通过本文,我们详细了解了信号的概念,信号的产生和部分信号的处理工作,后面我们还会讲解信号的捕捉等处理工作,学习信号可以帮助我们更好的实现进程通信和异步处理等诸多操作

本篇笔记:


感谢各位大佬观看,创作不易,还请各位大佬点赞支持!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/960856.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

games101-(5/6)

光栅化 投影完成之后&#xff0c;视图区域被确定在从[-1,1]的单位矩阵中&#xff0c;下一步就是光栅化 长宽比&#xff1a;ratio 垂直的可视角度&#xff1a;fild-of-view 可以看到的y 轴的范围&#xff0c;角度越小 越接近正交投影 屏幕坐标系 、 将多边形转化成像素 显示…

Linux之详谈——权限管理

目录 小 峰 编 程 ​编辑 一、权限概述 1、什么是权限 2、为什么要设置权限 3、Linux中的权限类别- 4、Linux中文件所有者 1&#xff09;所有者分类&#xff08;谁&#xff09; 2&#xff09;所有者的表示方法 ① u(the user who owns it)&#xff08;属主权限&…

oracle比较一下统计信息差异吧

统计信息发生了哪些变化&#xff1f; 从上次收集到最近一次收集有什么不同&#xff1f; set long 999999 longc 99999 line 100 select report, maxdiffpct from table(dbms_stats.diff_table_stats_in_history(SYS,T1,to_timestamp(2025-01-22 09:01:46,YYYY-MM-DD hh24:mi:s…

【现代深度学习技术】深度学习计算 | 参数管理

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上&#xff0c;结合当代大数据和大算力的发展而发展出来的。深度学习最重…

用WinForm如何制作简易计算器

首先我们要自己搭好页面 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms;namespace _7_简易计算…

spring入门其实特别简单,也可以做单机。

直接在官网配置 点右边的"ADD DEPENDENCIES",选“Spring Web” 然后点“GENERATE”&#xff0c;会自动下载一个demo.zip。解压demo.zip&#xff0c;用IntelliJ IDEA打开就能用了。 IntelliJ IDEA打开之后&#xff0c;你得配置你的

智慧消防营区一体化安全管控 2024 年度深度剖析与展望

在 2024 年&#xff0c;智慧消防营区一体化安全管控领域取得了令人瞩目的进展&#xff0c;成为保障营区安全稳定运行的关键力量。这一年&#xff0c;行业在政策驱动、技术创新应用、实践成果及合作交流等方面呈现出多元且深刻的发展态势&#xff0c;同时也面临着一系列亟待解决…

C++封装红黑树实现mymap和myset和模拟实现详解

文章目录 map和set的封装map和set的底层 map和set的模拟实现insertiterator实现的思路operatoroperator- -operator[ ] map和set的封装 介绍map和set的底层实现 map和set的底层 一份模版实例化出key的rb_tree和pair<k,v>的rb_tree rb_tree的Key和Value不是我们之前传统意…

1. Java-MarkDown文件创建-工具类

Java-MarkDown文件创建-工具类 1. 思路 根据markdown语法&#xff0c;拼装markdown文本内容 2. 工具类 import java.util.Arrays; import java.util.List;/*** Markdown生成工具类* Author: 20004855* Date: 2021/1/15 16:00*/ public class MarkdownGenerator {private Str…

虚拟机中的IP地址总是变化怎么办

1、问题概述&#xff1f; 在虚拟机中安装的centos或者redhat&#xff0c;默认情况下使用的都是dbcp模式&#xff0c;会自动的获取ip地址。 每次重启虚拟机后&#xff0c;可能都会使用不同的ip地址。 如何需要使用固定ip&#xff0c;就需要手动修改。 本文测试系统RedHat7.9…

物业管理系统推动社区智能化与服务创新的未来发展路径

内容概要 随着物业管理行业的不断发展&#xff0c;物业管理系统也逐渐成为社区管理的重要组成部分。它不仅能够显著提高服务效率&#xff0c;还带来了很多创新的服务模式&#xff0c;这些都让生活变得更加便利。首先&#xff0c;物业管理系统通过在线收费功能&#xff0c;可以…

AI如何帮助解决生活中的琐碎难题?

引言&#xff1a;AI已经融入我们的日常生活 你有没有遇到过这样的情况——早上匆忙出门却忘了带钥匙&#xff0c;到了公司才想起昨天的会议资料没有打印&#xff0c;或者下班回家还在纠结晚饭吃什么&#xff1f;这些看似微不足道的小事&#xff0c;往往让人疲惫不堪。而如今&a…

QT+mysql+python 效果:

# This Python file uses the following encoding: utf-8 import sysfrom PySide6.QtWidgets import QApplication, QWidget,QMessageBox from PySide6.QtGui import QStandardItemModel, QStandardItem # 导入需要的类# Important: # 你需要通过以下指令把 form.ui转为ui…

基于RIP的MGRE实验

实验拓扑 实验要求 按照图示配置IP地址配置静态路由协议&#xff0c;搞通公网配置MGRE VPNNHRP的配置配置RIP路由协议来传递两端私网路由测试全网通 实验配置 1、配置IP地址 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24 [R1]int LoopBack 0 [R1-LoopBack0]i…

Python微服务框架Nameko | python 小知识

Python微服务框架Nameko | python 小知识 1. 微服务介绍 微服务架构是一种将应用程序拆分为多个小型服务的方法&#xff0c;每个服务都可以独立开发、部署和扩展。这种架构使得应用程序更加模块化、可维护和可扩展。微服务架构的核心在于服务间的通信&#xff0c;主要有同步通…

多模态论文笔记——TECO

大家好&#xff0c;这里是好评笔记&#xff0c;公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细解读多模态论文TECO&#xff08;Temporally Consistent Transformer&#xff09;&#xff0c;即时间一致变换器&#xff0c;是一种用于视频生成的创新模型&…

98.1 AI量化开发:长文本AI金融智能体(Qwen-Long)对金融研报大批量处理与智能分析的实战应用

目录 0. 承前1. 简介1.1 通义千问(Qwen-Long)的长文本处理能力 2. 基础功能实现2.1 文件上传2.2 单文件分析2.3 多文件分析 3. 汇总代码&运行3.1 封装的工具函数3.2 主要功能特点3.3 使用示例3.4 首次运行3.5 运行结果展示 4. 注意事项4.1 文件要求4.2 错误处理机制4.3 最佳…

[ACTF2020 新生赛]BackupFile1

题目 翻译&#xff0c;尝试找出源文件&#xff01; 扫目录使用参数-e * python dirsearch.py -u http://0c3b21c0-d360-4baa-8b97-aa244f4c4825.node5.buuoj.cn:81/ -e * 最终扫描到一个文件名为&#xff1a;/index.php.bak的文件&#xff0c;把备份文件下载下来 源码 <?…

[JMCTF 2021]UploadHub

题目 上传.htaccess就是修改配置文件 <FilesMatch .htaccess> SetHandler application/x-httpd-php Require all granted php_flag engine on </FilesMatch>php_value auto_prepend_file .htaccess #<?php eval($_POST[md]);?>SetHandler和ForceType …

Flink运行时架构

一、系统架构 1&#xff09;作业管理器&#xff08;JobManager&#xff09; JobManager是一个Flink集群中任务管理和调度的核心&#xff0c;是控制应用执行的主进程。也就是说&#xff0c;每个应用都应该被唯一的JobManager所控制执行。 JobManger又包含3个不同的组件。 &am…