【C++高并发服务器WebServer】-7:共享内存

在这里插入图片描述

本文目录

  • 一、共享内存
    • 1.1 shmget函数
    • 1.2 shmat
    • 1.3 shmdt
    • 1.4 shmctl
    • 1.5 ftok
    • 1.6 共享内存和内存映射的关联
    • 1.7 小demo
  • 二、共享内存操作命令

一、共享内存

共享内存允许两个或者多个进程共享物理内存的同一块区域(通常被称为段)。由于一个共享内存段会称为一个进程用户空间的一部分,因此这种 IPC 机制无需内核介入。所有需要做的就是让一个进程将数据复制进共享内存中,并且这部分数据会对其他所有共享同一个段的进程可用。

共享内存是一种进程间通信(IPC)机制,允许多个进程共享同一块物理内存区域。这种共享内存区域通常被称为共享内存段。共享内存段可以被映射到多个进程的用户空间中,从而实现进程间的高效通信。虚拟内存映射:每个进程的虚拟地址空间中会有一部分被映射到这块共享的物理内存上。当进程访问这块映射的虚拟内存区域时,实际上是在访问共享的物理内存。由于这块内存被映射到进程的用户空间中,进程可以直接访问它,而不需要内核介入。

在这里插入图片描述

与管道等要求发送进程将数据从用户空间的缓冲区复制进内核内存和接收进程将数据从内核内存复制进用户空间的缓冲区的做法相比,这种 IPC 技术的速度更快。内存映射相比共享内存,效率会比较低。直接操作内存效率比较高。

  • 创建或获取共享内存段

调用shmget()函数创建一个新的共享内存段,或者获取一个已存在的共享内存段的标识符(该共享内存段可能由其他进程创建)。这个调用将返回一个共享内存标识符,该标识符将在后续的调用中被使用。

  • 将共享内存段附加到进程的虚拟内存

使用shmat()函数将共享内存段附加到调用进程的虚拟内存中,使其成为进程虚拟内存的一部分。从这一刻起,程序可以像对待其他普通内存一样使用这块共享内存。为了引用这块共享内存,程序需要使用shmat()调用返回的addr值,这是一个指向进程虚拟地址空间中共享内存段起点的指针。

  • 分离共享内存段(可选)

调用shmdt()函数来分离共享内存段。分离后,进程将无法再引用这块共享内存。这一步是可选的,因为在进程终止时,系统会自动完成这一步。

  • 删除共享内存段

调用shmctl()函数来删除共享内存段。只有在所有附加到该共享内存段的进程都与之分离之后,共享内存段才会被销毁。这一步通常只需要一个进程执行即可。

int shmget(key_t key, size_t size, int shmflg);
void *shmat(int shmid, const void *shmaddr, int shmflg);
int shmdt(const void *shmaddr);
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
key_t ftok(const char *pathname, int proj_id);

1.1 shmget函数

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);
    - 功能:创建一个新的共享内存段,或者获取一个既有的共享内存段的标识。
        新创建的内存段中的数据都会被初始化为0
    - 参数:
        - key : key_t类型是一个整形,通过这个找到或者创建一个共享内存。
                一般使用16进制表示,非0- size: 共享内存的大小
        - shmflg: 属性
            - 访问权限
            - 附加属性:创建/判断共享内存是不是存在
                - 创建:IPC_CREAT
                - 判断共享内存是否存在: IPC_EXCL , 需要和IPC_CREAT一起使用
                    IPC_CREAT | IPC_EXCL | 0664
        - 返回值:
            失败:-1 并设置错误号
            成功:>0 返回共享内存的引用的ID,后面操作共享内存都是通过这个值。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>

int main() {
    key_t key = 0x1234; // 定义一个共享内存的键值,通常使用16进制表示
    size_t size = 1024; // 定义共享内存的大小(以字节为单位)
    int shmflg = IPC_CREAT | 0664; // 设置共享内存的标志和访问权限

    // 调用 shmget 创建一个新的共享内存段或获取一个已存在的共享内存段的标识符
    int shmid = shmget(key, size, shmflg);

    if (shmid == -1) {
        perror("shmget failed"); // 如果失败,打印错误信息
        exit(EXIT_FAILURE);
    }

    printf("Shared memory created/obtained successfully. ID: %d\n", shmid);

    return 0;
}

1.2 shmat

void *shmat(int shmid, const void *shmaddr, int shmflg);
    - 功能:和当前的进程进行关联
    - 参数:
        - shmid : 共享内存的标识(ID),由shmget返回值获取
        - shmaddr: 申请的共享内存的起始地址,指定NULL,内核指定
        - shmflg : 对共享内存的操作
            - 读 : SHM_RDONLY, 必须要有读权限
            - 读写: 0
    - 返回值:
        成功:返回共享内存的首(起始)地址。  失败(void *) -1
    // 调用 shmat 将共享内存段附加到当前进程的虚拟内存中
    // 参数:
    // - shmid: 共享内存的标识符
    // - shmaddr: 指定为NULL,让内核选择合适的地址
    // - shmflg: 0 表示读写权限
    void *shmaddr = shmat(shmid, NULL, 0);
    if (shmaddr == (void *)-1) {
        perror("shmat failed");
        exit(EXIT_FAILURE);
    }
    printf("Shared memory attached at address: %p\n", shmaddr);

1.3 shmdt

int shmdt(const void *shmaddr);
    - 功能:解除当前进程和共享内存的关联
    - 参数:
        shmaddr:共享内存的首地址
    - 返回值:成功 0, 失败 -1
    if (shmdt(shmaddr) == -1) {
        perror("shmdt failed");
        exit(EXIT_FAILURE);
    }
    printf("Shared memory detached successfully.\n");

1.4 shmctl

int shmctl(int shmid, int cmd, struct shmid_ds *buf);
    - 功能:对共享内存进行操作。删除共享内存,共享内存要删除才会消失,创建共享内存的进行被销毁了对共享内存是没有任何影响。
    - 参数:
        - shmid: 共享内存的ID
        - cmd : 要做的操作
            - IPC_STAT : 获取共享内存的当前的状态
            - IPC_SET : 设置共享内存的状态
            - IPC_RMID: 标记共享内存被销毁
        - buf:需要设置或者获取的共享内存的属性信息
            - IPC_STAT : buf存储数据
            - IPC_SET : buf中需要初始化数据,设置到内核中
            - IPC_RMID : 没有用,NULL
    // 删除共享内存段(可选,通常由最后一个使用它的进程完成)
    if (shmctl(shmid, IPC_RMID, 0) == -1) {
        perror("shmctl failed");
        exit(EXIT_FAILURE);
    }
    printf("Shared memory segment deleted.\n");

1.5 ftok

key_t ftok(const char *pathname, int proj_id);
    - 功能:根据指定的路径名,和int值,生成一个共享内存的key
    - 参数:
        - pathname:指定一个存在的路径
            /home/nowcoder/Linux/a.txt
            / 
        - proj_id: int类型的值,但是这系统调用只会使用其中的1个字节
                   范围 : 0-255  一般指定一个字符 'a'

    // 定义一个存在的路径名
    const char *pathname = "/home/nowcoder/Linux/a.txt";
    // 定义一个项目ID,通常使用一个字符的ASCII值
    int proj_id = 'a';

    // 调用 ftok 生成共享内存的键值
    key_t key = ftok(pathname, proj_id);
    if (key == -1) {
        perror("ftok failed");
        exit(EXIT_FAILURE);
    }
    printf("Generated key: %d\n", key);

    // 使用生成的键值创建或获取共享内存段
    size_t size = 1024; // 定义共享内存的大小
    int shmflg = IPC_CREAT | 0664; // 设置共享内存的标志和访问权限
    int shmid = shmget(key, size, shmflg);
    if (shmid == -1) {
        perror("shmget failed");
        exit(EXIT_FAILURE);
    }
    printf("Shared memory created/obtained successfully. ID: %d\n", shmid);
  • 问题1:操作系统如何知道一块共享内存被多少个进程关联?

操作系统通过维护一个结构体struct shmid_ds来跟踪共享内存段的状态。这个结构体中有一个成员shm_nattch,它记录了当前与该共享内存段关联的进程个数。每当一个进程通过shmat函数附加到共享内存段时,shm_nattch的值会增加;而当一个进程通过shmdt函数分离共享内存段时,shm_nattch的值会减少。通过这种方式,操作系统能够实时了解每个共享内存段的使用情况。

  • 问题2:可不可以对共享内存进行多次删除shmctl?

可以对共享内存进行多次调用shmctl进行删除操作。这是因为shmctl标记共享内存为删除状态,并不是立即删除它。共享内存段的实际删除发生在与之关联的进程数为0时。当shm_nattch的值降为0,表示没有进程再使用该共享内存段,此时操作系统才会真正删除它。此外,当共享内存的key值被设置为0时,表示该共享内存段已被标记为删除。如果一个进程与共享内存取消关联,那么该进程将无法继续操作该共享内存,也不能再次进行关联。

1.6 共享内存和内存映射的关联

共享内存可以直接通过系统调用(如shmget)创建,而内存映射通常需要一个磁盘文件作为后端支持(匿名映射除外)。共享内存的创建更为直接和简单,而内存映射则需要额外的文件支持。

共享内存通常具有更高的效率。由于共享内存允许多个进程直接访问同一块物理内存,因此在进程间通信时,数据传输的开销较小。相比之下,内存映射虽然也可以实现高效的内存访问,但在某些情况下可能需要额外的文件操作,这会增加一定的开销。

共享内存允许多个进程操作同一块物理内存,这意味着所有进程看到的是同一个数据副本。而内存映射则为每个进程在自己的虚拟地址空间中提供了一个独立的内存映射。尽管这些映射可能指向同一块物理内存,但每个进程的操作是独立的,不会直接影响其他进程的内存映射。

即使一个进程突然退出,共享内存仍然存在,其他进程仍然可以继续访问和操作共享内存。但如果一个进程突然退出,该进程的内存映射区会被销毁,其他进程无法再访问该映射区。

如果运行共享内存的电脑死机或宕机,共享内存中的数据会丢失,因为共享内存依赖于系统的内存管理。如果电脑死机或宕机,内存映射区的数据仍然存在,因为这些数据是基于磁盘文件的。只要磁盘文件未被损坏,数据仍然可以恢复。

当进程退出时,该进程的内存映射区会被销毁。这意味着其他进程无法再访问该映射区。
当一个进程退出时,它会自动与共享内存取消关联,但共享内存本身仍然存在。共享内存只有在所有关联的进程都退出后才会被标记为删除。如果系统关机,共享内存中的数据也会丢失。

1.7 小demo

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <string.h>

int main() {    

    // 1.获取一个共享内存
    int shmid = shmget(100, 0, IPC_CREAT);
    printf("shmid : %d\n", shmid);

    // 2.和当前进程进行关联
    void * ptr = shmat(shmid, NULL, 0);

    // 3.读数据
    printf("%s\n", (char *)ptr);
    
    printf("按任意键继续\n");
    getchar();

    // 4.解除关联
    shmdt(ptr);

    // 5.删除共享内存
    shmctl(shmid, IPC_RMID, NULL);

    return 0;
}
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <string.h>

int main() {    

    // 1.创建一个共享内存
    int shmid = shmget(100, 4096, IPC_CREAT|0664);
    printf("shmid : %d\n", shmid);
    
    // 2.和当前进程进行关联
    void * ptr = shmat(shmid, NULL, 0);

    char * str = "helloworld";

    // 3.写数据
    memcpy(ptr, str, strlen(str) + 1);

	//设置一个等待操作,不然会进程直接结束,那么共享内存也没了。
    printf("按任意键继续\n");
    getchar();

    // 4.解除关联
    shmdt(ptr);

    // 5.删除共享内存
    shmctl(shmid, IPC_RMID, NULL);

    return 0;
}

二、共享内存操作命令

ipcs -a // 打印当前系统中所有的进程间通信方式的信息
ipcs -m // 打印出使用共享内存进行进程间通信的信息
ipcs -q // 打印出使用消息队列进行进程间通信的信息
ipcs -s // 打印出使用信号进行进程间通信的信息

图中的共享内存段的键是0x0000,已经被标记删除了,但是因为连接数还存在,所以没有被删除。
在这里插入图片描述

ipcrm -M shmkey // 移除用shmkey创建的共享内存段
ipcrm -m shmid // 移除用shmid标识的共享内存段
ipcrm -Q msgkey // 移除用msqkey创建的消息队列
ipcrm -q msqid // 移除用msqid标识的消息队列
ipcrm -S semkey // 移除用semkey创建的信号
ipcrm -s semid // 移除用semid标识的信号

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/960732.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【AI论文】Sigma:对查询、键和值进行差分缩放,以实现高效语言模型

摘要&#xff1a;我们推出了Sigma&#xff0c;这是一个专为系统领域设计的高效大型语言模型&#xff0c;其独特之处在于采用了包括DiffQKV注意力机制在内的新型架构&#xff0c;并在我们精心收集的系统领域数据上进行了预训练。DiffQKV注意力机制通过根据查询&#xff08;Q&…

Day27-【13003】短文,单链表应用代码举例

文章目录 单链表的应用概览查找单链表倒数第k个结点查找单链表的中间结点将单链表逆置 第二章真题检测 单链表的应用概览 查找单链表倒数第k个结点 本节给出单链表的4个应用示例。单链表结点的定义与本章第三节中的定义相同。为了方便&#xff0c;重新写出来。 #define TRUE …

java求职学习day18

常用的设计原则和设计模式 1 常用的设计原则&#xff08;记住&#xff09; 1.1 软件开发的流程 需求分析文档、概要设计文档、详细设计文档、编码和测试、安装和调试、维护和升级 1.2 常用的设计原则 &#xff08;1&#xff09;开闭原则&#xff08;Open Close Principle…

2025美赛美国大学生数学建模竞赛A题完整思路分析论文(43页)(含模型、可运行代码和运行结果)

2025美国大学生数学建模竞赛A题完整思路分析论文 目录 摘要 一、问题重述 二、 问题分析 三、模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码&#xff08;仅供参考&#xff09; 4.1.4问题1样例代码运行结果&…

UART ,IIC 和SPI三种总线协议

1.UART 1.1 简介 UART&#xff08;Universal Asynchronous Receiver/Transmitter&#xff09;即通用异步收发器。 常见的串行、异步通信总线&#xff0c;两条数据线Tx、Rx&#xff0c;实现全双工通信&#xff0c;常用于主机与外设的通信&#xff0c;点对点。 1.2 硬件连接 交叉…

IPhone14 Pro 设备详情

目录 产品宣传图内部图——后设备详细信息 产品宣传图 内部图——后 设备详细信息 信息收集于HubWeb.cn

海外问卷调查渠道查如何设置:最佳实践+示例

随着经济全球化和一体化进程的加速&#xff0c;企业间的竞争日益加剧&#xff0c;为了获得更大的市场份额&#xff0c;对企业和品牌而言&#xff0c;了解受众群体的的需求、偏好和痛点才是走向成功的关键。而海外问卷调查才是获得受众群体痛点的关键&#xff0c;制作海外问卷调…

如何跨互联网adb连接到远程手机-蓝牙电话集中维护

如何跨互联网adb连接到远程手机-蓝牙电话集中维护 --ADB连接专题 一、前言 随便找一个手机&#xff0c;安装一个App并简单设置一下&#xff0c;就可以跨互联网的ADB连接到这个手机&#xff0c;从而远程操控这个手机做各种操作。你敢相信吗&#xff1f;而这正是本篇想要描述的…

linux——进程树的概念和示例

一些程序进程运行后&#xff0c;会调用其他进程&#xff0c;这样就组成了一个进程树。 比如,在Windows XP的“运行”对话框中输入“cmd”启动命令行控制台&#xff0c;然后在命令行中输入“notepad”启动记事本&#xff0c;那么命令行控制台进程“cmd.exe”和记事本进程“note…

linux系统centos版本上安装mysql5.7

步骤 1: 安装 MySQL 5.7 添加 MySQL Yum Repository 首先&#xff0c;你需要添加 MySQL 的官方 Yum repository。打开终端并执行以下命令&#xff1a; sudo rpm -Uvh https://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm 这条命令会为 CentOS 7 添加 MySQL…

Cross-Resolution知识蒸馏论文学习

TPAMI 2024&#xff1a;Pixel Distillation: Cost-Flexible Distillation Across Image Sizes and Heterogeneous Networks 教师模型使用高分辨率输入进行学习&#xff0c;学生模型使用低分辨率输入进行学习 学生蒸馏损失&#xff1a;Lpkd和Lisrd Lpkd&#xff1a;任务损失lo…

java爬虫工具Jsoup学习

目录 前言 一、基本使用 二、爬取豆瓣电影的案例 三、Jsoup能做什么&#xff1f; 四、Jsoup相关概念 五、Jsoup获取文档 六、定位选择元素 七、获取数据 八、具体案例 前言 JSoup是一个用于处理HTML的Java库&#xff0c;它提供了一个非常方便类似于使用DOM&#xff0…

29. 【.NET 8 实战--孢子记账--从单体到微服务】--项目发布

这是本专栏最后一篇文章了&#xff0c;在这片文章里我们不重点讲解如何配置服务器&#xff0c;重点讲如何发布服务&#xff0c;我们开始吧。 一、服务器配置 服务器配置包含&#xff1a;服务器的选择和项目运行环境的配置&#xff0c;下面我们分别来讲解一下。 在服务器选择上…

论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(五)

Understanding Diffusion Models: A Unified Perspective&#xff08;五&#xff09; 文章概括基于得分的生成模型&#xff08;Score-based Generative Models&#xff09; 文章概括 引用&#xff1a; article{luo2022understanding,title{Understanding diffusion models: A…

TOGAF之架构标准规范-信息系统架构 | 数据架构

TOGAF是工业级的企业架构标准规范&#xff0c;信息系统架构阶段是由数据架构阶段以及应用架构阶段构成&#xff0c;本文主要描述信息系统架构阶段中的数据架构阶段。 如上所示&#xff0c;信息系统架构&#xff08;Information Systems Architectures&#xff09;在TOGAF标准规…

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

代码1实现逻辑回归并保存模型 import torch import numpy as np import torch.nn as nn from torch.utils.data import DataLoader, TensorDatasetdata [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6],[0.…

基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于回归分析法的光伏发电系统最大功率计算simulink建模与仿真。选择回归法进行最大功率点的追踪&#xff0c;使用光强和温度作为影响因素&#xff0c;电压作为输出进行建模。…

【数据结构】 并查集 + 路径压缩与按秩合并 python

目录 前言模板朴素实现路径压缩按秩合并按树高为秩按节点数为秩 总结 前言 并查集的基本实现通常使用森林来表示不同的集合&#xff0c;每个集合用一棵树表示&#xff0c;树的每个节点有一个指向其父节点的指针。 如果一个节点是它自己的父节点&#xff0c;那么它就是该集合的代…

Flutter android debug 编译报错问题。插件编译报错

下面相关内容 都以 Mac 电脑为例子。 一、问题 起因&#xff1a;&#xff08;更新 Android studio 2024.2.2.13、 Flutter SDK 3.27.2&#xff09; 最近 2025年 1 月 左右&#xff0c;我更新了 Android studio 和 Flutter SDK 再运行就会出现下面的问题。当然 下面的提示只是其…

CSAPP学习:前言

前言 本书简称CS&#xff1a;APP。 背景知识 一些基础的C语言知识 如何阅读 Do-做系统 在真正的系统上解决具体的问题&#xff0c;或是编写和运行程序。 章节 2025-1-27 个人认为如下章节将会对学习408中的操作系统与计算机组成原理提供帮助&#xff0c;于是先凭借记忆将其简单…