Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作1 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

目录

  • Tensor 基本操作
    • torch.max
      • 默认
      • 指定维度

Tensor 基本操作

torch.max

torch.max 实现降维运算,基于指定的 dim 选取子元素的最大值。

默认

    a = torch.randn(1, 3)
    print(a)
    b = torch.max(a)
    print(b)

Result:

tensor([[-0.5284, -1.5308, -0.2267]])
tensor(-0.2267)

指定维度

指定哪个维度,就是减去第几维:

假如有一个 Tensor Shape 是 AxBxCxD,那么有对应关系

A(dim0),B(dim1),C(dim2),D(dim3)。

假如沿着 dim = 0,则得到矩阵为 BxCxD,其中降维后的 D 中每个值,是 0 维 A 个原始元素最大的值。
假如沿着 dim = 1,则得到矩阵为 AxCxD,其中降维后的 D 中每个值,是 1 维 B 个原始元素最大的值。

    a = torch.randn(4, 3, 2, 5)      # 声明 4x3x2x5 的 Tensor
    print(a)
    max, max_indices = torch.max(a, 1) # 沿着第 1 维运算,得到的 max 是一个新的 Tensor, shape(4x2x5)
                                       # 其中,新的 tensor 的第 2 维 有 5 个元素,每个元素是原来第 1 维的 3 个元素的对应位置的最大者
    print(max)
    print(max_indices)

运算过程:
在这里插入图片描述
运算的效果,就是将原来第 1 维的 三个 元素通过取最大值的方式消解了,剩下了 4x2x5 的新的 Tensor.

Detail result:

tensor([[[[ 1.6156, -0.3533,  0.5970,  1.0218,  0.3952],   # 这是一个 4x3x2x5 的 Tensor
          [ 0.2581, -1.3161,  0.3243, -0.9350,  0.6976]],

         [[-0.6239, -0.8732, -0.2739,  1.3695,  0.9614],
          [ 3.0117, -2.3211,  2.2359, -1.5275,  1.0230]],

         [[ 0.2711, -0.5295, -0.9168, -0.9496, -0.5264],
          [-0.0418,  1.4757, -0.3033, -0.5069, -0.6909]]],


        [[[-0.3262,  1.0079, -0.2975, -0.9859,  1.6166],
          [ 1.2771, -0.0456,  0.1857,  0.3275,  0.4207]],

         [[ 0.2362, -0.0821, -0.0105,  1.7645,  0.0989],
          [-0.1281, -1.0425, -0.5537, -0.0339,  1.3466]],

         [[-1.3060,  1.0920, -0.9126, -0.3850, -0.7273],
          [-0.0519, -0.3566, -0.5489, -3.6990,  0.6110]]],


        [[[ 1.2422, -0.2393,  0.4786,  0.6107, -0.0252],
          [ 0.2563, -0.4030,  1.8649,  0.3462,  0.7197]],

         [[-0.6126,  0.7801, -0.6078,  0.1391, -0.8297],
          [-1.8600, -0.2814,  0.2408, -0.9058, -0.0186]],

         [[ 1.6242,  1.5925, -0.0591, -0.0107, -1.8332],
          [ 0.9812, -3.2381, -1.7055, -1.3484, -1.3409]]],


        [[[-0.3392, -0.4359, -0.0451,  2.4718,  1.9482],
          [ 0.6110, -0.5543,  0.3466,  0.4199, -0.0319]],

         [[-0.2322, -0.8355, -1.0138,  0.9620, -0.4311],
          [-0.7799,  0.8414,  0.9293, -0.0322,  0.1638]],

         [[ 0.6299,  0.7966,  1.8616, -1.8382, -0.1141],
          [ 1.2325, -0.0446, -0.7722,  1.2540, -1.8609]]]])
tensor([[[ 1.6156, -0.3533,  0.5970,  1.3695,  0.9614],     # 取 Max 之后得到的新的 Tensor
         [ 3.0117,  1.4757,  2.2359, -0.5069,  1.0230]],

        [[ 0.2362,  1.0920, -0.0105,  1.7645,  1.6166],
         [ 1.2771, -0.0456,  0.1857,  0.3275,  1.3466]],

        [[ 1.6242,  1.5925,  0.4786,  0.6107, -0.0252],
         [ 0.9812, -0.2814,  1.8649,  0.3462,  0.7197]],

        [[ 0.6299,  0.7966,  1.8616,  2.4718,  1.9482],
         [ 1.2325,  0.8414,  0.9293,  1.2540,  0.1638]]])
tensor([[[0, 0, 0, 1, 1],
         [1, 2, 1, 2, 1]],

        [[1, 2, 1, 1, 0],
         [0, 0, 0, 0, 1]],

        [[2, 2, 0, 0, 0],
         [2, 1, 0, 0, 0]],

        [[2, 2, 2, 0, 0],
         [2, 1, 1, 2, 1]]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/960530.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

以太网详解(六)OSI 七层模型

文章目录 OSI : Open System Interconnect(Reference Model)第七层:应用层(Application)第六层:表示层(Presentation)第五层:会话层(Session)第四…

Spring MVC异常处理机制

文章目录 1. 异常处理的思路2. 异常处理两种方式3. 简单异常处理器SimpleMappingExceptionResolver 1. 异常处理的思路 系统中异常包括两类:预期异常和运行时异常RuntimeException,前者通过捕获异常从而获取异常信息,后者主要通过规范代码开发…

本地大模型编程实战(03)语义检索(2)

文章目录 准备按批次嵌入加载csv文件,分割文档并嵌入测试嵌入效果总结代码 上一篇文章: 本地大模型编程实战(02)语义检索(1) 详细介绍了如何使用 langchain 实现语义检索,为了演示方便,使用的是 langchain 提供的内存数据库。 在实…

[Dialog屏幕开发] 设置方式对话框

阅读该篇文章之前,可先阅读下述资料 [Dialog屏幕开发] 设置搜索帮助https://blog.csdn.net/Hudas/article/details/145381433?spm1001.2014.3001.5501https://blog.csdn.net/Hudas/article/details/145381433?spm1001.2014.3001.5501上篇文章我们的屏幕已实现了如…

【JavaEE进阶】Spring留言板实现

目录 🎍预期结果 🍀前端代码 🎄约定前后端交互接口 🚩需求分析 🚩接口定义 🌳实现服务器端代码 🚩lombok介绍 🚩代码实现 🌴运行测试 🎄前端代码实…

1.23学习

misc buuctf-小明的保险箱 打开附件是一个在线图片首先将其另存为,然后仅仅只是一个图片,而无其他信息,那么我们再进行binwalk或者foremost文件分离,得到了一个文件夹,其中含有一个压缩包但是是一个加密的&#xff0…

【Python】第五弹---深入理解函数:从基础到进阶的全面解析

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【MySQL】【Python】 目录 1、函数 1.1、函数是什么 1.2、语法格式 1.3、函数参数 1.4、函数返回值 1.5、变量作用域 1.6、函数…

【数据结构】(1)集合类的认识

一、什么是数据结构 1、数据结构的定义 数据结构就是存储、组织数据的方式,即相互之间存在一种或多种关系的数据元素的集合。 2、学习数据结构的目的 在实际开发中,我们需要使用大量的数据。为了高效地管理这些数据,实现增删改查等操作&…

大数据Hadoop入门2

第三部分(Hadoop MapReduce和Hadoop YARN) 1.课程内容-大纲-学习目标 2.理解先分再合、分而治之的思想 3.hadoop团队针对MapReduce的设计构思 map这里不能翻译成地图,翻译为mapping比较好一点 4.Hadoop MapReduce介绍、阶级划分和进程组成 5…

什么是BFF?他有什么用?

BFF(Backend for Frontend) 是一种架构模式,专门为前端应用提供定制化的后端服务。它的核心思想是为不同的前端客户端(如 Web、移动端、桌面端等)提供专门的后端服务,而不是让所有客户端共享同一个通用的后…

【深度之眼cs231n第七期】笔记(三十一)

目录 强化学习什么是强化学习?马尔可夫决策过程(MDP)Q-learning策略梯度SOTA深度强化学习 还剩一点小尾巴,还是把它写完吧。(距离我写下前面那行字又过了好几个月了【咸鱼本鱼】)(汗颜&#xff…

K8S极简教程(4小时快速学会)

1. K8S 概览 1.1 K8S 是什么 K8S官网文档:https://kubernetes.io/zh/docs/home/ 1.2 K8S核心特性 服务发现与负载均衡:无需修改你的应用程序即可使用陌生的服务发现机制。存储编排:自动挂载所选存储系统,包括本地存储。Secret和…

SPDK vhost介绍

目录 1. vhost技术的背景与动机Virtio 介绍virtio-blk数据路径为例 2. vhost技术的核心原理2.1 vhost-kernel2.2 vhost-user举例 2.3 SPDK vhostvhost的优势IO请求处理数据传输控制链路调整 3. SPDK vhost的实现与配置3.1 环境准备3.2 启动SPDK vhost服务3.3 创建虚拟块设备3.4…

【C++数论】880. 索引处的解码字符串|2010

本文涉及知识点 数论:质数、最大公约数、菲蜀定理 LeetCode880. 索引处的解码字符串 给定一个编码字符串 s 。请你找出 解码字符串 并将其写入磁带。解码时,从编码字符串中 每次读取一个字符 ,并采取以下步骤: 如果所读的字符是…

[创业之路-270]:《向流程设计要效率》-2-企业流程架构模式 POS架构(规划、业务运营、支撑)、OES架构(业务运营、使能、支撑)

目录 一、POS架构 二、OES架构 三、POS架构与OES架构的差异 四、各自的典型示例 POS架构典型示例 OES架构典型示例 示例分析 五、各自的典型企业 POS架构典型企业 OES架构典型企业 分析 六、各自典型的流程 POS架构的典型流程 OES架构的典型流程 企业流程架构模式…

FFmpeg音视频采集

文章目录 音视频采集音频采集获取设备信息录制麦克风录制声卡 视频采集摄像机画面采集 音视频采集 DirectShow(简称DShow)是一个Windows平台上的流媒体框架,提供了高质量的多媒体流采集和回放功能,它支持多种多样的媒体文件格式&…

qt-QtQuick笔记之常见项目类简要介绍

qt-QtQuick笔记之常见项目类简要介绍 code review! 文章目录 qt-QtQuick笔记之常见项目类简要介绍1.QQuickItem2.QQuickRectangle3.QQuickImage4.QQuickText5.QQuickBorderImage6.QQuickTextInput7.QQuickButton8.QQuickSwitch9.QQuickListView10.QQuickGridView11.QQuickPopu…

Autosar-Os是怎么运行的?(多核系统运行)

写在前面: 入行一段时间了,基于个人理解整理一些东西,如有错误,欢迎各位大佬评论区指正!!! 目录 1.Autosar多核操作系统 1.1多核启动过程 1.2多核运行过程 1.2.1核间任务同步 1.2.2Counte…

spring万字面试题汇总

Spring Springboot 目录 1.什么是依赖循环? 2.Spring 如何解决循环依赖? 3. 为什么Spring解决循环依赖要用到三级缓存,二级缓存不够吗? 4.什么是Spring 的IOC? 5.什么是Spring的DI? 6.什么是spring的bean? 7.…

UiAutomator的详细介绍

UIAutomator作为一种高效的测试框架,通过自动化手段显著提升了用户界面(UI)测试的效率与准确性。它不仅支持自动生成功能测试用例,还允许开发者在不同设备上执行这些测试,确保了应用程序的一致性和稳定性。 以下是对 …