技术总结:FPGA基于GTX+RIFFA架构实现多功能SDI视频转PCIE采集卡设计方案

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 3、详细设计方案
    • 设计框图
    • SDI 输入设备
    • Gv8601a 均衡器
    • GTX 解串与串化
    • SMPTE SD/HD/3G SDI IP核
    • BT1120转RGB
    • FDMA图像缓存
    • RIFFA用户数据控制
    • RIFFA架构详解
    • Xilinx 7 Series Integrated Block for PCI Express
    • RIFFA驱动及其安装
    • QT上位机
    • HDMI输出
    • RGB转BT1120
    • Gv8500 驱动器
    • SDI转HDMI盒子
    • 工程设计源码层面架构
    • PCIE上板调试注意事项
    • FPGA工程编译注意事项
  • 4、设计方案1详解-->Kintex7-35T版本
  • 5、设计方案2详解-->Zynq7100版本
  • 6、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 7、上板调试验证
    • 准备工作
    • SDI视频采集转PCIE输出效果演示

技术总结:FPGA基于GTX+RIFFA架构实现多功能SDI视频转PCIE采集卡设计方案

1、前言

FPGA实现SDI视频编解码现状;
目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。本设计采用GTX逻辑资源解串方案;

FPGA实现PCIE数据传输现状;
目前基于Xilinx系列FPGA的PCIE通信架构主要有以下2种,一种是简单的、傻瓜式的、易于开发的、对新手友好的XDMA架构,该架构对PCIE协议底层做了封装,并加上了DMA引擎,使得使用的难度大大降低,加之Xilinx提供了配套的Windows和Linux系统驱动和上位机参考源代码,使得XDMA一经推出就让工程师们欲罢不能;另一种是更为底层的、需要设计者有一定PCIE协议知识的、更易于定制化开发的7 Series Integrated Block for PCI Express架构,该IP实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;本设计采用第二种方案,调用7 Series Integrated Block for PCI Express IP核,加上RIFFA架构实现PCIE通信,7 Series Integrated Block for PCI Express实现底层协议,RIFFA实现TLP报文组包、解包和轻量级DMA功能;本设计采用基于7 Series Integrated Block for PCI Express的RIFFA架构;

工程概述

本设计使用FPGA基于GTX+RIFFA架构实现多功能SDI视频采集卡;具体功能如下:
我的FPGA开发板硬件设计了2路SDI输入接口+2路SDI输出接口+PCIEX4接口+1路HDMI输出接口;
基于以上接口,设计了多功能SDI视频采集卡工程,具体如下:
第1路3G-SDI输入视频转PCIE输出给PC端电脑主机,并用QT上位机接收;
第1路3G-SDI输入视频转3G-SDI输出,并用显示器接收显示;
第2路3G-SDI输入视频转3G-SDI输出,并用显示器接收显示;
第2路3G-SDI输入视频转HDMI输出,并用显示器接收显示;

第1路SDI输入输出路径如下:
输入源为3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;另外1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;

第2路SDI输入输出路径如下:
输入源为3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;另外1路视频从DDR3中读出,送入纯verilog实现的GRB888转HDMI模块实现TMDS差分视频编码,最后视频输出到显示器显示;由此形成SDI相机+GTX+HDMI输出的高端架构;

针对市面上主流的FPGA,本博客设计了2套工程工程解决方案,具体如下:
在这里插入图片描述
现对上述2套工程工程解决方案做如下解释,方便读者理解:

工程解决方案1

开发板FPGA型号为Xilinx–>Kintex7–35T–xc7k325tffg484-2;输入源为2个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;
第1路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1920x1080@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;另外1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;
第2路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;另外1路视频从DDR3中读出,送入纯verilog实现的GRB888转HDMI模块实现TMDS差分视频编码,最后视频输出到显示器显示,输出分辨率为1920x1080@60Hz;由此形成SDI相机+GTX+HDMI输出的高端架构;

工程解决方案2

开发板FPGA型号为Xilinx–>Zynq7100–xc7z100ffg900-2;输入源为2个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;
第1路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为Zynq PL端DDR3,不建议使用PS端DDR3做缓存,因为Zynq的HP接口数据位宽仅有64bit,可能影响视频传输效率;其中1路视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1920x1080@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;另外1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;
第2路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为Zynq PL端DDR3,不建议使用PS端DDR3做缓存,因为Zynq的HP接口数据位宽仅有64bit,可能影响视频传输效率;其中1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;另外1路视频从DDR3中读出,送入纯verilog实现的GRB888转HDMI模块实现TMDS差分视频编码,最后视频输出到显示器显示,输出分辨率为1920x1080@60Hz;由此形成SDI相机+GTX+HDMI输出的高端架构;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

3、详细设计方案

设计框图

工程解决方案详细设计方案框图如下:
在这里插入图片描述

SDI 输入设备

SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
在这里插入图片描述

Gv8601a 均衡器

Gv8601a芯片实现单端转差分和均衡EQ的功能,这里选用Gv8601a是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8601a均衡器原理图如下:
在这里插入图片描述

GTX 解串与串化

本设计使用Xilinx特有的GTX高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,GTX起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,GTX起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTX的使用一般需要例化GTX IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTX具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTX的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTX的GTXE2_CHANNEL和GTXE2_COMMON源语直接使用GTX资源;此外,为了动态配置GTX线速率,还需要GTX控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTX 解串与串化模块代码架构如下:
在这里插入图片描述

SMPTE SD/HD/3G SDI IP核

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:
在这里插入图片描述
SMPTE SD/HD/3G SDI IP核必须与GTX配合才能使用,对于SDI视频接收而言,该IP接收来自于GTX的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:
在这里插入图片描述

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送RIFFA模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为2帧乒乓缓存;图像缓存模块代码架构如下:
在这里插入图片描述

RIFFA用户数据控制

RIFFA用户数据控制模块的功能为产生读视频控制信号,控制视频读出并写入RIFFA模块;代码里设置了状态机,首先接收RIFFA模块的读数据请求,然后生成读视频控制信号控制视频读出,再根据RIFFA用户写时序将视频写入RIFFA,当写完一帧图像后再回来初始状态,由此形成循环;代码架构如下:
在这里插入图片描述

RIFFA架构详解

本设计使用的RIFFA 版本为RIFFA1.0;
RIFFA (Reusable Integration Framework for FPGA Accelerators) 是一个简单的框架,用于通过 PCI Express 总线将数据从主机 CPU 传输到 FPGA。该框架需要一个支持 PCIe 的工作站和一个带有 PCIe 连接器的主板上的 FPGA。RIFFA支持Windows和Linux,Altera和Xilinx,并绑定了C / C++,Python,MATLAB和Java。在软件方面有两个主要功能:数据发送和数据接收。这些函数通过 C/C++、Python、MATLAB 和 Java 中的用户库公开。该驱动程序支持每个系统多个 FPGA(最多 5 个)。软件绑定适用于 Linux 和 Windows 操作系统。用户只需编写几行代码即可与FPGA IP核进行通信。在硬件方面,用户访问具有独立发送和接收信号的接口。这些信号通过FIFO接口提供交易握手和第一个单词,用于读取/写入数据。无需了解总线地址、缓冲区大小或 PCIe 数据包格式。只需在FIFO接口上发送数据,在FIFO接口上接收数据即可。RIFFA不依赖于PCIe桥接器,因此不受网桥实现的限制。相反,RIFFA 直接与 PCIe 端点配合使用,并且运行速度足够快,使 PCIe 链路饱和。软件和硬件界面都得到了极大的简化。RIFFA架构如下:
在这里插入图片描述
RIFFA纯verilog代码架构如下:
在这里插入图片描述
复杂的代码架构需要长时间的品读才能消化,代码中提供了注释,感兴趣的可以去仔细研读并修改为自己项目需要的情景,对于普通开发者而言,其实只需要掌握RIFFA的用户逻辑即可完成数据读写操作,至于TLP包的封装与解包等操作,代码中已经做好了,一般不需要修改,除非需要定制功能和性能优化外;RIFFA用户逻辑接口及其详细注释如下:该接口位于riffa_wrapper.v;
在这里插入图片描述
RIFFA 框架不依赖 PCIe Bridge ,因此它不受桥连接的控制,这就实现了PCIe 通信链路的高带宽。下图显示了使用 32 位,64 位以及 128 位接口的RIFFA 框架性能图,图中的实线为理论上最大的带宽值,虚线为可实现的最大带宽值。PCIe Gen1 以及 PCIe Gen2 都是使用 8B/10B 编码方式,理论上的最大带宽利用率为 80%,在下图中我们可以看出在使用 32 位,64 位接口的情况下,RIFFA 框架可以实现理论上的最大带宽利用率 80%左右;在 128 位接口的情况下最大带宽利用率为 76%左右;
在这里插入图片描述
以PCIEX4为例,RIFFA模块资源消耗如下:
在这里插入图片描述

Xilinx 7 Series Integrated Block for PCI Express

7 Series Integrated Block for PCI Express是Xilinx官方推出的集成在FPGA内部的PCIE硬核IP;主要实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;7 Series Integrated Block for PCI Express例化使用十分简单,只是配置项比较多,但大部分保持默认即可,一般也用不到那么多功能,最主要的配置项如下:
在这里插入图片描述
7 Series Integrated Block for PCI Express在代码中调用如下:
在这里插入图片描述

RIFFA驱动及其安装

本设计提供RIFFA驱动源码,该源码既包括Windows也包括Linux,并提供Windows下的驱动安装可执行文件,如下:
在这里插入图片描述
Windows下驱动安装步骤如下:友情提示,Windows下驱动秩序安装一次即可;
第一步:使系统禁用签名并进入测试模式,方法如下:
在这里插入图片描述
也可百度其他方法实现上述目的,完成后电脑屏幕右下角应有如下显示:
在这里插入图片描述
第二步:修改可执行文件的兼容性,方法如下:
在这里插入图片描述
第三步:安装驱动,方法如下:
在这里插入图片描述
驱动装好后,下载FPGA工程bit,然后重启电脑,打开我的电脑–>管理–>设备管理器,应看到如下设备:
在这里插入图片描述

QT上位机

PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;QT上位机源码如下:
在这里插入图片描述
电脑端接收到 FPGA 开发板传来的数据是用户应用程序通过调用库函数fpga_rec才开始接收来自 FPGA 开发板的读请求,然后电脑端将数据分包接收;上位机运行样式如下:
在这里插入图片描述

HDMI输出

在HDMI输出方式下,使用HDMI输出模块将RGB视频编码为HDMI差分信号,HDMI输出模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,代码如下:
在这里插入图片描述
关于这个模块,请参考我之前的博客,博客地址:点击直接前往

RGB转BT1120

在SDI输出方式下需要使用该模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:
在这里插入图片描述

SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程设计源码层面架构

工程源码由Bolck Design设计和模块例化组成,Bolck Design主要为基于FDMA架构的图像缓存;模块例化则为包括Bolck Design在内的整体代码架构;以设计方案1为例Bolck Design设计如下,其他设计方案与之类似:
在这里插入图片描述
以设计方案1为例,综合后的工程源码层面架构如下:
在这里插入图片描述

PCIE上板调试注意事项

1:必须先安装RIFFA-PCIE驱动,详情请参考第3章节的《RIFFA驱动及其安装》,驱动只需安装一次;
2:下载FPGA工程bit后需要重启电脑,电脑才能识别到RIFFA-PCIE驱动;程序固化后也需要重启电脑;
3:FPGA板卡插在主机上后一般不需要额外供电,如果你的板子元器件较多功耗较大,则需要额外供电,详情咨询开发板厂家,当然;
4:PCIE调试需要电脑主机,但笔记本电脑理论上也可以外接出来PCIE,详情百度自行搜索一下,电脑主机PCIE插槽不方便操作时可以使用延长线接出来,某宝有卖;

FPGA工程编译注意事项

由于RIFFA源码包含的头文件众多,所以在编译工程之前,必须设置全局包含文件,否则编译器找不到头文件导致报错,设置如下:
在这里插入图片描述

4、设计方案1详解–>Kintex7-35T版本

开发板FPGA型号:Xilinx-Kintex7–35T–xc7k325tffg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:2路3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
第1路SDI输入视频的输出路径:PCIE2.0+3G-SDI,分辨率1920x1080@60Hz;
第2路SDI输入视频的输出路径:HDMI+3G-SDI,分辨率1920x1080@60Hz;
SDI视频解串方案:Xilinx–GTX高速接口解串;
SDI视频解码方案:Xilinx–SMPTE SD/HD/3G SDI解码;
HDMI视频编码方案:纯verilog编码;
图像缓存方案:FDMA图像缓存+DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X4,5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现多功能SDI视频采集卡;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构多功能SDI视频采集卡的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、设计方案2详解–>Zynq7100版本

开发板FPGA型号:Xilinx–Zynq7100–xc7z100ffg900-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:2路3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
第1路SDI输入视频的输出路径:PCIE2.0+3G-SDI,分辨率1920x1080@60Hz;
第2路SDI输入视频的输出路径:HDMI+3G-SDI,分辨率1920x1080@60Hz;
SDI视频解串方案:Xilinx–GTX高速接口解串;
SDI视频解码方案:Xilinx–SMPTE SD/HD/3G SDI解码;
HDMI视频编码方案:纯verilog编码;
图像缓存方案:FDMA图像缓存+PL端DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X4,5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现多功能SDI视频采集卡;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构多功能SDI视频采集卡的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

7、上板调试验证

准备工作

需要准备的器材如下:
SDI摄像头或HDMI转SDI盒子;
FPGA开发板;
PC主机;
显示器;
我的开发板连接如下:
在这里插入图片描述
下载FPGA工程bit,重启电脑,打开上位机软件,即可看到测速情况;

SDI视频采集转PCIE输出效果演示

SDI视频采集转PCIE输出效果如下:

SDI-RIFFA-PCIE

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/959930.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker 部署 java 项目详解

在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署。今天我们以若依项目为例,总结下部署项目的整体流程。简单来说,第一步:安装项目所需的中间件;第二步&#xff1…

动手学图神经网络(2):跆拳道俱乐部案例实战

动手学图神经网络(2):跆拳道俱乐部案例实战 在深度学习领域,图神经网络(GNNs)能将传统深度学习概念推广到不规则的图结构数据,使神经网络能够处理对象及其关系。将基于 PyTorch Geometric 库&a…

Elastic Agent 对 Kafka 的新输出:数据收集和流式传输的无限可能性

作者:来 Elastic Valerio Arvizzigno, Geetha Anne 及 Jeremy Hogan 介绍 Elastic Agent 的新功能:原生输出到 Kafka。借助这一最新功能,Elastic 用户现在可以轻松地将数据路由到 Kafka 集群,从而实现数据流和处理中无与伦比的可扩…

1.25学习

web bugku-源代码 打开环境后看到了一个提交的界面,我们根据题目查看源代码,看到了js代码,其中有几处是url编码,我们对其进行解码,后面的unescape()函数就是将p1解码以及%35%34%61%61%32p2解码…

Hive详细讲解-基础语法快速入门

文章目录 1.DDL数据库相关操作1.1创建数据库1.2指定路径下创建数据库1.3添加额外信息创建with dbproperties1.4查看数据库 结合like模糊查询 2.查看某一个数据库的相关信息2.1.如何查看数据库信息,extended可选2.2修改数据库 3.Hive基本数据类型4.复杂数据类型5.类型…

深度解析:基于Vue 3与Element Plus的学校管理系统技术实现

一、项目架构分析 1.1 技术栈全景 核心框架:Vue 3 TypeScript UI组件库:Element Plus(含图标动态注册) 状态管理:Pinia(用户状态持久化) 路由方案:Vue Router(动态路…

基于Django的个人博客系统的设计与实现

【Django】基于Django的个人博客系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 系统采用Python作为主要开发语言,结合Django框架构建后端逻辑,并运用J…

【架构面试】一、架构设计认知

涉及分布式锁、中间件、数据库、分布式缓存、系统高可用等多个技术领域,旨在考查候选人的技术深度、架构设计能力与解决实际问题的能力。 1. 以 Redis 是否可以作为分布式锁为例: 用 Redis 实现分布式锁会存在哪些问题? 死锁:如果…

DrawDB:超好用的,免费数据库设计工具

DrawDB:超好用的,免费数据库设计工具 引言 在软件开发过程中,数据库设计是一个至关重要的环节。 无论是关系型数据库还是非关系型数据库,良好的数据库设计都能显著提升系统的性能和可维护性。 然而,数据库设计往往…

如何将xps文件转换为txt文件?xps转为pdf,pdf转为txt,提取pdf表格并转为txt

文章目录 xps转txt方法一方法二 pdf转txt整页转txt提取pdf表格,并转为txt 总结另外参考XPS文件转换为TXT文件XPS文件转换为PDF文件PDF文件转换为TXT文件提取PDF表格并转为TXT示例代码(部分) 本文测试代码已上传,路径如下&#xff…

【Linux】线程、线程控制、地址空间布局

⭐️个人主页:小羊 ⭐️所属专栏:Linux 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 1、Linux线程1.1 线程的优缺点1.2 线程异常和用途1.3 线程等待1.3 线程终止1.4 线程分离1.5 线程ID和地址空间布局1.6 线程栈 1、…

c语言操作符(详细讲解)

目录 前言 一、算术操作符 一元操作符: 二元操作符: 二、赋值操作符 代码例子: 三、比较操作符 相等与不相等比较操作符: 大于和小于比较操作符: 大于等于和小于等于比较操作符: 四、逻辑操作符 逻辑与&…

宏_wps_宏修改word中所有excel表格的格式_设置字体对齐格式_删除空行等

需求: 将word中所有excel表格的格式进行统一化,修改其中的数字类型为“宋体, 五号,右对齐, 不加粗,不倾斜”,其中的中文为“宋体, 五号, 不加粗,不倾斜” 数…

第一届“启航杯”网络安全挑战赛WP

misc PvzHE 去这个文件夹 有一张图片 QHCTF{300cef31-68d9-4b72-b49d-a7802da481a5} QHCTF For Year 2025 攻防世界有一样的 080714212829302316092230 对应Q 以此类推 QHCTF{FUN} 请找出拍摄地所在位置 柳城 顺丰 forensics win01 这个软件 云沙盒分析一下 md5 ad4…

GESP2024年3月认证C++六级( 第三部分编程题(2)好斗的牛)

参考程序&#xff08;暴力枚举&#xff09; #include <iostream> #include <vector> #include <algorithm> using namespace std; int N; vector<int> a, b; int ans 1e9; int main() {cin >> N;a.resize(N);b.resize(N);for (int i 0; i &l…

QFramework实现原理 一 :日志篇

作为一款轻量级开源的Unity程序框架&#xff0c;QFramework结合了作者凉鞋多年的开发经验&#xff0c;是比较值得想要学习框架的初学者窥探一二的对象&#xff0c;我就尝试结合凉鞋大大给出的文档和ai&#xff0c;解析一下其背后的代码逻辑&#xff0c;以作提升自己的一次试炼 …

图论汇总1

1.图论理论基础 图的基本概念 二维坐标中&#xff0c;两点可以连成线&#xff0c;多个点连成的线就构成了图。 当然图也可以就一个节点&#xff0c;甚至没有节点&#xff08;空图&#xff09; 图的种类 整体上一般分为 有向图 和 无向图。 有向图是指 图中边是有方向的&a…

_CLASSDEF在C++中的用法详解及示例

_CLASSDEF在C++中的用法详解及示例 _CLASSDEF的定义与使用示例说明代码解析总结在C++编程中,宏(Macro)是一种预处理指令,它允许程序员在编译之前对代码进行文本替换。_CLASSDEF是一个自定义的宏,它提供了一种便捷的方式来定义类及其相关类型。本文将详细介绍_CLASSDEF在C+…

华为数据之道-读书笔记

内容简介 关键字 数字化生产 已经成为普遍的商业模式&#xff0c;其本质是以数据为处理对象&#xff0c;以ICT平台为生产工具&#xff0c;以软件为载体&#xff0c;以服务为目的的生产过程。 信息与通信技术平台&#xff08;Information and Communication Technology Platf…

从CRUD到高级功能:EF Core在.NET Core中全面应用(四)

初识表达式树 表达式树&#xff1a;是一种可以描述代码结构的数据结构&#xff0c;它由一个节点组成&#xff0c;节点表示代码中的操作、方法调用或条件表达式等&#xff0c;它将代码中的表达式转换成一个树形结构&#xff0c;每个节点代表了代码中的操作例如&#xff0c;如果…