【算法】经典的八大排序算法

点击链接 可视化排序 动态演示各个排序算法来加深理解,大致如下

一,冒泡排序(Bubble Sort)

原理

  • 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过多次比较和交换相邻元素的方式,将最大(或最小)的元素逐步冒泡到数组的一端。每一轮冒泡将会将未排序部分中最大(或最小)的元素“浮”到正确的位置。

算法步骤

  1. 从数组的第一个元素开始,依次比较相邻的两个元素。
  2. 如果前一个元素比后一个元素大(或小,取决于排序顺序),则交换这两个元素。
  3. 继续向后遍历,对每一对相邻元素重复步骤 2。
  4. 重复步骤 1 到 3,直到没有元素需要交换,整个数组就是有序的。

算法实现

#include <iostream>
#include <vector>

// 冒泡排序
void bubbleSort(std::vector<int>& arr) {
    int n = arr.size();
    
    for (int i = 0; i < n - 1; ++i) {
        // 在每一轮中,比较相邻元素并交换
        for (int j = 0; j < n - i - 1; ++j) {
            if (arr[j] > arr[j + 1]) {
                std::swap(arr[j], arr[j + 1]);
            }
        }
    }
}

性能分析

  • 时间复杂度:
    • 冒泡排序的时间复杂度在最坏和平均情况下都为 O(n^2),其中 n 是待排序元素的数量。每次遍历需要进行 n-1 次比较,而需要执行 n-1 次遍历。
    • 最好情况下,如果列表本身已经有序,冒泡排序仍然需要进行 n-1 次遍历,但由于没有发生交换,每次遍历只需要进行 n-1、n-2、...、2、1 次比较,时间复杂度为 O(n)。
  • 空间复杂度:
    • 冒泡排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 冒泡排序是稳定的排序算法,因为它在相邻元素比较时仅在必要时才进行交换。

二,选择排序(Selection Sort)

原理

  • 选择排序(Selection Sort)是一种简单的排序算法,它将待排序数组分为已排序和未排序两部分,然后从未排序部分选择最小(或最大)的元素,与已排序部分的最后一个元素交换位置。每次交换都会将一个元素归位,直到整个数组有序。

算法步骤

  1. 初始时,将整个序列分为已排序和未排序两部分,已排序为空,未排序包含所有元素。
  2. 在未排序部分中,找到最小(或最大)的元素。
  3. 将找到的最小元素与未排序部分的第一个元素交换位置,将其放到已排序部分的末尾。
  4. 重复执行步骤 2 和 3,直到未排序部分为空,整个序列变得有序。

算法实现

#include <iostream>
#include <vector>

// 选择排序
void selectionSort(std::vector<int>& arr) {
    int n = arr.size();
    
    for (int i = 0; i < n - 1; ++i) {
        int minIndex = i; // 记录最小元素的索引
        
        // 在未排序部分找到最小元素的索引
        for (int j = i + 1; j < n; ++j) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }
        }
        
        // 将最小元素与当前位置交换
        std::swap(arr[i], arr[minIndex]);
    }
}

性能分析

  • 时间复杂度:
    • 选择排序的时间复杂度在最好、最坏和平均情况下都是 O(n^2),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 选择排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 选择排序是不稳定的排序算法,因为在选择最小(或最大)元素的过程中,相同值的元素可能会交换位置。

三,插入排序(Insertion Sort)

原理

  • 插入排序(Insertion Sort)是一种简单的排序算法,它将待排序数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的正确位置,使得已排序部分始终保持有序。

算法步骤

  1. 初始时,将第一个元素视为已排序部分,其余元素视为未排序部分。
  2. 从未排序部分中取出一个元素,将其插入到已排序部分的适当位置,使得插入后的已排序部分仍然保持有序。
  3. 重复步骤 2,直到未排序部分为空,整个序列变得有序。

算法实现

#include <iostream>
#include <vector>

// 插入排序
void insertionSort(std::vector<int>& arr) {
    int n = arr.size();
    
    for (int i = 1; i < n; ++i) {
        int current = arr[i]; // 当前要插入的元素
        int j = i - 1; // 已排序部分的末尾索引
        
        // 将元素插入到正确位置
        while (j >= 0 && arr[j] > current) {
            arr[j + 1] = arr[j];
            j--;
        }
        arr[j + 1] = current;
    }
}

性能分析

  • 时间复杂度:
    • 插入排序的时间复杂度在最好情况下是 O(n),最坏和平均情况下是 O(n^2),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 插入排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 插入排序是稳定的排序算法,因为它在插入元素时相同值的元素不会改变相对顺序。

四,希尔排序(Shell Sort)

原理

  • 希尔排序(Shell Sort)是一种改进的插入排序算法,它通过将数组分成多个子序列来排序,然后逐步缩小子序列的间隔,最终将整个数组排序。希尔排序的核心思想是使数组中任意间隔 h 的元素都是有序的,当 h 逐步减小到 1 时,整个数组变为有序。

算法步骤

  1. 选择一个增量序列(通常为递减的整数序列),例如 [n/2, n/4, n/8, ...],其中 n 是数组的长度。
  2. 对每个增量进行迭代,将数组分成多个子数组,每个子数组中的元素间隔为增量。
  3. 对每个子数组进行插入排序,将子数组中的元素插入到已排序部分的适当位置。
  4. 重复步骤 2 和 3,不断减小增量,直到增量为 1,此时整个数组被视为一个子数组,进行最后一次插入排序。

算法实现

#include <iostream>

void shellSort(int arr[], int n) {
    for (int gap = n / 2; gap > 0; gap /= 2) {
        // 使用插入排序对子数组进行排序
        for (int i = gap; i < n; ++i) {
            int temp = arr[i];
            int j = i;
            
            // 移动元素,寻找插入位置
            while (j >= gap && arr[j - gap] > temp) {
                arr[j] = arr[j - gap];
                j -= gap;
            }
            
            arr[j] = temp; // 将元素插入到合适的位置
        }
    }
}

性能分析

  • 时间复杂度:
    • 希尔排序的时间复杂度依赖于所选的增量序列。最好的已知增量序列的时间复杂度是 O(n^1.3),平均情况下的时间复杂度较难分析,但它通常优于 O(n^2) (介于 O(n log n) 和 O(n^2) 之间)的插入排序。具体取决于增量序列的选择。
  • 空间复杂度:
    • 希尔排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 希尔排序不是稳定的排序算法,因为在交换元素的过程中可能会改变相同值元素的相对顺序。

五,归并排序(Merge Sort)

原理

  • 归并排序(Merge Sort)是一种分治策略的排序算法,它将待排序数组不断划分为两个子数组,然后将这些子数组逐步合并成一个有序数组。归并排序的核心思想是将两个有序的子数组合并成一个有序的数组,这样逐步合并,最终得到整个数组有序。

算法步骤

  1. 分割:将待排序数组递归地分割成较小的子数组,直到每个子数组只包含一个元素。
  2. 合并:将两个有序的子数组合并成一个有序数组。合并过程中,分别从两个子数组中取出较小的元素,放入结果数组中。

算法实现

#include <iostream>
#include <vector>

// 合并两个有序子数组
void merge(std::vector<int>& arr, int left, int mid, int right) {
    int leftCount = mid - left + 1;    // 左边子数组大小
    int rightCount = right - mid;      // 右边子数组大小
    
    // 创建临时数组存放两个子数组的元素
    std::vector<int> leftArr(leftCount), rightArr(rightCount);
    for (int i = 0; i < leftCount; ++i)
        leftArr[i] = arr[left + i];
    for (int i = 0; i < rightCount; ++i)
        rightArr[i] = arr[mid + 1 + i];
    
    // 合并两个子数组
    int i = 0, j = 0, k = left;
    while (i < leftCount && j < rightCount) {
        if (leftArr[i] <= rightArr[j]) {
            arr[k++] = leftArr[i++];
        } else {
            arr[k++] = rightArr[j++];
        }
    }
    
    // 将剩余的元素拷贝到结果数组中
    while (i < leftCount) {
        arr[k++] = leftArr[i++];
    }
    while (j < rightCount) {
        arr[k++] = rightArr[j++];
    }
}

// 归并排序
void mergeSort(std::vector<int>& arr, int left, int right) {
    if (left < right) {
        int mid = left + (right - left) / 2;
        // 递归地对左右子数组进行排序
        mergeSort(arr, left, mid);
        mergeSort(arr, mid + 1, right);
        // 合并两个有序子数组
        merge(arr, left, mid, right);
    }
}

性能分析

  • 时间复杂度:
    • 归并排序的时间复杂度是稳定的,无论数据的分布如何,都是 O(n log n),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 归并排序需要额外的空间来存储临时数组,因此其空间复杂度是 O(n)。
  • 稳定性:
    • 归并排序是稳定的排序算法,因为在合并两个子数组时,相同值的元素不会改变相对顺序。

六,快速排序(Quick Sort)

原理

  • 快速排序(Quick Sort)是一种基于分治思想的排序算法,它通过选择一个基准元素,将数组划分为小于基准和大于基准的两部分,然后递归地对这两部分进行排序。在每一次划分后,基准元素会被放置在最终的正确位置上。

算法步骤

  1. 选择基准元素:从数组中选择一个基准元素,通常选择第一个或最后一个元素。
  2. 分区:将数组划分为小于基准和大于基准的两部分,使得基准元素位于正确的位置上。
  3. 递归排序:对小于基准和大于基准的两部分分别递归地应用快速排序算法。
  4. 合并:不需要合并步骤,因为在分区过程中已经将数组划分为有序的部分。

算法实现

#include <iostream>
#include <vector>

// 分区函数,返回基准元素的正确位置
int partition(std::vector<int>& arr, int low, int high) {
    int pivot = arr[low]; // 选择第一个元素作为基准
    while (low < high)
    {
        while (low<high && arr[high]>=pivot)--high;
        arr[low] = arr[high];   // 将小于基准的元素移到左边
        while (low<high && arr[low]<=pivot)++low;
        arr[high] = arr[low];   // 将大于基准的元素移到右边
    }

    // 将基准元素放到正确的位置上
    arr[low] = pivot;
    return low; // 返回存放基准的最终位置
}

// 快速排序
void quickSort(std::vector<int>& arr, int low, int high) {
    if (low < high) {
        int pivotIndex = partition(arr, low, high); // 基准元素的正确位置
        // 对基准左边和右边的部分分别递归进行排序
        quickSort(arr, low, pivotIndex - 1);
        quickSort(arr, pivotIndex + 1, high);
    }
}

性能分析

  • 时间复杂度:
    • 平均情况下,快速排序的时间复杂度是 O(n log n),其中 n 是待排序元素的数量。
    • 在最坏情况下(数组已经有序或接近有序),快速排序的时间复杂度可能退化到 O(n^2)。
  • 空间复杂度:
    • 快速排序的空间复杂度主要取决于递归调用的栈空间,通常为 O(log n)。
    • 在最坏情况下,递归栈的深度可能达到 n,空间复杂度为 O(n)。
  • 稳定性:
    • 快速排序是不稳定的排序算法,因为在分区过程中可能改变相同元素的相对顺序。

七,堆排序(Heap Sort)

原理

  • 堆排序(Heap Sort)是一种基于二叉堆的排序算法。它将待排序数组构建成一个二叉堆,然后不断从堆顶取出最大(或最小)元素,将其放置到已排序部分的末尾,直到整个数组有序。

算法步骤

  1. 构建最大堆:将待排序数组看作完全二叉树,从最后一个非叶子节点开始,逐步向上调整,使得每个节点都大于其子节点。
  2. 不断从堆顶取出最大元素:每次将堆顶元素与堆末尾元素交换,然后将堆的大小减一,再进行堆化操作,将最大元素移至正确位置。
  3. 重复步骤 2,直到堆中只剩一个元素,此时整个数组有序。

算法实现

#include <iostream>
#include <vector>

// 交换元素
void swap(int& a, int& b) {
    a = a + b;
    b = a - b;
    a = a - b;
}

// 对以 root 为根的子树进行堆化
void heapify(std::vector<int>& arr, int n, int root) {
    int largest = root; // 初始化最大元素为根节点
    
    while (largest < n) {
        int left = 2 * root + 1; // 左子节点索引
        int right = 2 * root + 2; // 右子节点索引
        
        // 找到左右子节点中较大的元素索引
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        
        // 如果最大元素不是根节点,则交换元素
        if (largest != root) {
            swap(arr[root], arr[largest]);
            root = largest; // 继续向下调整
        } else {
            break; // 堆结构已经满足,退出循环
        }
    }
}

// 堆排序
void heapSort(std::vector<int>& arr) {
    int n = arr.size();
    
    // 构建大根堆,从最后一个非叶子节点开始
    for (int i = n / 2 - 1; i >= 0; --i) {
        heapify(arr, n, i);
    }
    
    // 逐步取出最大元素并进行堆化
    for (int i = n - 1; i > 0; --i) {
        swap(arr[0], arr[i]); // 将堆顶元素移至已排序部分的末尾
        heapify(arr, i, 0); // 对剩余的部分进行堆化
    }
}

性能分析

  • 时间复杂度:
    • 堆排序的时间复杂度在最好、最坏和平均情况下都是 O(n log n),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 堆排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 堆排序通常是不稳定的,因为堆化操作可能改变相同元素的相对顺序。然而,通过一些额外的操作可以实现稳定性。

八,基数排序(Counting Sort)

原理

  • 基数排序(Radix Sort)是一种非比较的整数排序算法,它根据数字的每个位上的值来对元素进行排序。基数排序可以看作是桶排序的扩展,它先按照最低位进行排序,然后逐步移到更高位,直到所有位都考虑完毕。

算法步骤

  1. 找到最大数的位数:首先,找到待排序数组中最大数的位数,这将决定排序的轮数。
  2. 按位排序:从低位到高位,依次对每一位进行计数排序(或桶排序),将元素分配到不同的桶中。
  3. 合并桶:将每一轮排序后的桶中的元素按顺序合并成一个新的数组。
  4. 重复步骤 2 和 3,直到所有位都考虑完毕,得到有序数组。

算法实现

#include <iostream>
#include <vector>
#include <queue>

// 找到数组中的最大数
int findMax(std::vector<int>& arr) {
    int max = arr[0];
    for (int num : arr) {
        if (num > max) {
            max = num;
        }
    }
    return max;
}

// 基数排序
void radixSort(std::vector<int>& arr) {
    int n = arr.size();
    int max = findMax(arr);
    int exp = 1; // 用于获取每个位数的值

    while (max / exp > 0) {
        // 创建桶队列,每个桶用于存放某个位数上的元素
        std::vector<std::queue<int>> buckets(10);   // 使用10个桶,每个桶代表一个数字(0到9)

        // 将元素分配到桶中
        for (int i = 0; i < n; ++i) {
            int bucketIndex = (arr[i] / exp) % 10; // 计算当前位数的值,作为桶的索引
            buckets[bucketIndex].push(arr[i]); // 将元素放入对应的桶中
        }

        // 从桶中取回元素到原数组
        int index = 0;
        for (int i = 0; i < 10; ++i) {
            while (!buckets[i].empty()) {
                arr[index++] = buckets[i].front(); // 取出队列头部元素,放入原数组
                buckets[i].pop(); // 弹出队列头部元素
            }
        }

        exp *= 10; // 移到下一个位数
    }
}

性能分析

  • 时间复杂度:
    • 基数排序的时间复杂度取决于位数和基数的大小。对于位数为 k,基数为 r 的情况,时间复杂度为 O(k * (n + r))。
  • 空间复杂度:
    • 基数排序的空间复杂度为 O(n + r),其中 n 是待排序元素的数量,r 是基数的大小。
  • 稳定性:
    • 基数排序是稳定的排序算法,因为在同一位数上的排序时,相同值元素的相对顺序不会改变。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/95953.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

3d激光slam建图与定位(2)_aloam代码阅读

1.常用的几种loam算法 aloam 纯激光 lego_loam 纯激光 去除了地面 lio_sam imu激光紧耦合 lvi_sam 激光视觉 2.代码思路 2.1.特征点提取scanRegistration.cpp&#xff0c;这个文件的目的是为了根据曲率提取4种特征点和对当前点云进行预处理 输入是雷达点云话题 输出是 4种特征点…

mybatis:动态sql【2】+转义符+缓存

目录 一、动态sql 1.set、if 2.foreach 二、转义符 三、缓存cache 1. 一级缓存 2. 二级缓存 一、动态sql 1.set、if 在update语句中使用set标签&#xff0c;动态更新set后的sql语句&#xff0c;&#xff0c;if作为判断条件。 <update id"updateStuent" pa…

AP5192 DC-DC降压恒流LED汽车灯 LED长条灯 汽车雾灯驱动IC

AP5192是一款PWM工作模式,高效率、外围简单、 内置功率MOS管&#xff0c;适用于4.5-100V输入的高精度 降压LED恒流驱动芯片。最大电流1.5A。 AP5192可实现线性调光和PWM调光&#xff0c;线性调光 脚有效电压范围0.55-2.6V. AP5192 工作频率可以通过RT 外部电阻编程 来设定&…

在服务器上搭建Jenkins

目录 1.服务器要求 2.官方文档 3.在服务器上下载Jenkins 3.1 下载war包 3.2 将war包上传到服务器的一个目录下 3.3 启动jenkins 3.3.1 jdk版本升级 1&#xff09;下载jdk17 2&#xff09;解压到当前文件夹 3&#xff09;配置路径 4.jenkins配置 4.1 填写初始密码&a…

二叉搜索树(C++)

二叉搜索树 概念二叉搜索树的应用二叉搜索树的实现K模型基本结构和函数声明接口实现①find——查找关键码②Insert——插入关键码③Erase——删除关键码&#xff08;重点&#xff09;时间复杂度 源码&#xff08;整体&#xff09;非递归递归 KV模型 在使用C语言写数据结构阶段时…

VMware标准虚拟交换机和分布式交换机

一、虚拟交换机 初期的网络虚拟化&#xff0c;是非常狭义的概念&#xff0c;主要指的是因为计算资源虚拟化&#xff0c;每台物理宿主机上安装了虚拟化软件&#xff0c;同时会部署了虚拟交换机&#xff0c;负责物理机上面承载的VM&#xff08;虚拟机&#xff09;之间与对外的通…

Spring Cloud Gateway的快速使用

环境前置搭建Nacos&#xff1a;点击跳转 Spring Cloud Gateway Docs 新建gateway网关模块 pom.xml导入依赖 <!-- 网关 --> <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-gateway</artifact…

Linux centos7 bash编程小训练

训练要求&#xff1a; 求比一个数小的最大回文数 知识点&#xff1a; 一个数字正读反读都一样&#xff0c;我们称为回文数&#xff0c;如5、11、55、121、222等。 我们训练用bash编写一个小程序&#xff0c;由我们标准输入一个整数&#xff0c;计算机将显示出一个比这个数小…

Git 简单介绍

Git 是一个开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。 一、Git 安装 windows安装&#xff1a;进入网站 https://git-scm.com/ 安装&#xff0c;ubuntu配置&#xff1a;apt install git。当前于 Win 下已安装 Git 版本 2.40.1。 二、配置 设…

Pytorch-以数字识别更好地入门深度学习

目录 一、数据介绍 二、下载数据 三、可视化数据 四、模型构建 五、模型训练 六、模型预测 一、数据介绍 MNIST数据集是深度学习入门的经典案例&#xff0c;因为它具有以下优点&#xff1a; 1. 数据量小&#xff0c;计算速度快。MNIST数据集包含60000个训练样本和1000…

直播预告|博睿学院第四季即将开讲:博睿数据资深运维团队现身说法!

博睿学院第四季开讲啦&#xff01;本季博睿学院的课程将于本周四&#xff08;8月31日&#xff09;16点正式启动。本季我们邀请到了博睿数据平台支撑中心的四位资深运维专家现身说法&#xff0c;来为我们分享一体化智能可观测平台Bonree ONE的实践干货。 他们&#xff0c;见多识…

docker 学习-- 04 实践2 (lnpmr环境)

docker 学习 系列文章目录 docker 学习-- 01 基础知识 docker 学习-- 02 常用命令 docker 学习-- 03 环境安装 docker 学习-- 04 实践 1&#xff08;宝塔&#xff09; docker 学习-- 04 实践 2 &#xff08;lnpmr环境&#xff09; 文章目录 docker 学习 系列文章目录1. 配…

模型的保存加载、模型微调、GPU使用及Pytorch常见报错

序列化与反序列化 序列化就是说内存中的某一个对象保存到硬盘当中&#xff0c;以二进制序列的形式存储下来&#xff0c;这就是一个序列化的过程。 而反序列化&#xff0c;就是将硬盘中存储的二进制的数&#xff0c;反序列化到内存当中&#xff0c;得到一个相应的对象&#xff…

全球选手逐鹿清华!首届AI药物研发算法大赛完美收官

8月26日&#xff0c;首届全球AI药物研发算法大赛决赛答辩暨颁奖典礼&#xff0c;在清华大学生物医学馆举行。来自微软研究院、中国科学院上海药物研究所、上海交通大学等单位的十五支团队&#xff0c;从全球878支团队中脱颖而出&#xff0c;进入了决赛答辩环节。 产教融合&…

UDP 多播(组播)

前言&#xff08;了解分类的IP地址&#xff09; 1.组播&#xff08;多播&#xff09; 单播地址标识单个IP接口&#xff0c;广播地址标识某个子网的所有IP接口&#xff0c;多播地址标识一组IP接口。单播和广播是寻址方案的两个极端&#xff08;要么单个要么全部&#xff09;&am…

性能测试常见的测试指标

一、什么是性能测试 先看下百度百科对它的定义 性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。我们可以认为性能测试是&#xff1a;通过在测试环境下对系统或构件的性能进行探测&#xff0c;用以验证在生产环境下系统性能…

2023最新Python重点知识万字汇总

这是一份来自于 SegmentFault 上的开发者 二十一 总结的 Python 重点。由于总结了太多的东西&#xff0c;所以篇幅有点长&#xff0c;这也是作者"缝缝补补"总结了好久的东西。 **Py2 VS Py3** * print成为了函数&#xff0c;python2是关键字* 不再有unicode对象…

百度垂类离线计算系统发展历程

作者 | 弘远君 导读 本文以百度垂类离线计算系统的演进方向为主线&#xff0c;详细描述搜索垂类离线计算系统发展过程中遇到的问题&#xff0c;以及对应的解决方案。架构演进过程中一直奉行“没有最好的架构&#xff0c;只有最合适的架构”的宗旨&#xff0c;面对不同阶段遇到的…

微信小程序使用stomp.js实现STOMP传输协议的实时聊天

简介&#xff1a; uniapp开发的小程序中使用 本来使用websocket&#xff0c;后端同事使用了stomp协议&#xff0c;导致前端也需要对应修改。 如何使用 在static/js中新建stomp.js和websocket.js&#xff0c;然后在需要使用的页面引入监听代码发送代码即可 代码如下&#x…

request+python操作文件导入

业务场景&#xff1a; 通常我们需要上传文件或者导入文件如何操作呢&#xff1f; 首先通过f12或者通过抓包查到请求接口的参数&#xff0c;例如&#xff1a; 图中标注的就是我们需要的参数&#xff0c;其中 name是参数名&#xff0c;filename是文件名&#xff0c;Content-Type是…