PyTorch使用教程(8)-一文了解torchvision

一、什么是torchvision

torchvision提供了丰富的功能,主要包括数据集、模型、转换工具和实用方法四大模块。数据集模块内置了多种广泛使用的图像和视频数据集,如ImageNet、CIFAR-10、MNIST等,方便开发者进行训练和评估。模型模块封装了大量经典的预训练模型结构,如AlexNet、VGG、ResNet等,支持迁移学习和模型扩展。转换工具模块提供了丰富的数据增强和预处理操作,如裁剪、旋转、翻转、归一化等,有助于提升模型的泛化能力。实用方法模块则包含了一系列辅助工具,如图像保存、创建图像网格等,便于实验结果的可视化。
在这里插入图片描述

torchvision与PyTorch深度集成,支持CPU和GPU加速,能够在不同平台上高效运行。它简化了从数据准备到模型训练再到结果可视化的整个流程,为计算机视觉研究和开发提供了极大的便利。无论是初学者还是经验丰富的开发者,都可以通过torchvision快速构建和训练自己的视觉模型,加速AI应用的开发进程。

二、核心功能介绍

torchvision的核心功能主要包括数据集加载、图像转换、预训练模型加载、数据加载器以及实用工具等,以下是对这些功能的详细介绍及相关示例代码:

2.1 数据集加载

torchvision.datasets提供了多种流行的计算机视觉数据集,如CIFAR-10、MNIST、ImageNet等,支持一键下载和加载。

from torchvision import datasets

# 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=None)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=None)

2.2 图像转换

torchvision.transforms模块提供了丰富的图像转换操作,如缩放、裁剪、翻转、归一化等,这些操作可以单独使用,也可以组合使用,以形成数据增强流水线。
在这里插入图片描述

from torchvision import transforms
# 定义转换操作
transform = transforms.Compose([
    transforms.Resize((256, 256)),#缩放
    transforms.RandomCrop(224),#随机裁剪
    transforms.RandomHorizontalFlip(),#随机翻转
    transforms.ToTensor(), #张量转化
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 应用转换操作
image = Image.open('path_to_image.jpg')
processed_image = transform(image)

2.3 预训练模型加载

torchvision.models模块提供了多种经典的预训练模型,如ResNet、VGG、AlexNet等,可以直接加载这些模型进行迁移学习或作为基准模型。
在这里插入图片描述

from torchvision import models
# 加载预训练的ResNet-50模型
model = models.resnet50(pretrained=True)

2.4 数据加载器

torch.utils.data.DataLoader是一个实用的数据加载器,可以与torchvision提供的数据集一起使用,方便地进行批量加载和数据迭代。

from torch.utils.data import DataLoader

# 使用DataLoader加载数据
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

2.5 实用工具

torchvision还提供了一些实用工具,如torchvision.utils.make_grid,可以将多个图像拼接成一个网格图像,便于可视化。

from torchvision import utils
import matplotlib.pyplot as plt

# 获取一批图像
images, _ = next(iter(train_loader))

# 将图像拼接成网格
grid = utils.make_grid(images)

# 显示图像
plt.imshow(grid.permute(1, 2, 0))
plt.show()

3. 小结

‌TorchVision是PyTorch生态系统中的关键库,专为计算机视觉设计,提供数据集、预训练模型、图像转换工具和实用功能‌。它简化了视觉项目的开发,支持数据加载、预处理、模型迁移学习等,是构建和训练计算机视觉模型的重要工具‌

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/958243.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

实战演示:利用ChatGPT高效撰写论文

在当今学术界,撰写论文是一项必不可少的技能。然而,许多研究人员和学生在写作过程中常常感到困惑和压力。幸运的是,人工智能的快速发展为我们提供了新的工具,其中ChatGPT便是一个优秀的选择。本文将通过易创AI创作平台&#xff0c…

群晖部署-Calibreweb

最近家里搞了台群晖,准备部署个Calibreweb看看电子书,看了好多部署的教程老是不太成功,要么报错要么有问题的,很难搞。下面将部署流程分享一下,给大家参考,少走点弯路 镜像的选择 我们使用johngong/calibr…

WordPress果果对象存储插件

将网站上的图片等静态资源文件上传至七牛云对象存储,可以减轻服务器文件存储压力,提升静态文件访问速度,从而加速网站访问速度。 支持:阿里云对象存储、华为云对象存储、百度云对象存储、腾讯云对象存储、七牛云对象存储。 下载…

电路研究9.1.1——合宙 Air780EP 模组外围线路

本来要继续研究AT指令来着,结果发现后面还有之前用到的电路设计资料,所以就贴过来了。 5.3.2 工作模式: 注意:  当模块进入休眠模式或深度休眠模式后, VDD_EXT 电源会掉电,相应电压域的 GPIO 以及串口…

LabVIEW 太阳能光伏发电系统智能监控

本文介绍了基于 LabVIEW 的太阳能光伏发电监控系统的设计与实现,着重探讨了其硬件配置、软件架构以及系统的实现方法。该系统能够有效提高太阳能光伏发电的监控效率和精确性,实现了远程监控和数据管理的智能化。 ​ 项目背景 在当前能源紧张与环境污染…

风光并网对电网电能质量影响的matlab/simulink仿真建模

这个课题早在一几年的时候比较热门,之前作电科院配电网的一个项目中也有所涉及,我把其中一部分经典仿真模型思路分享给大家,电能质量影响这部分,我在模型中主要体现的就是不同容量的光伏、风电接入,对并网点的电压影响…

大模型应用编排工具Dify之常用编排组件

1.前言 dify的核心能力有:支持接入常见的 LLM、工作流编排、知识库和聊天助手等,架构图如下: 本文将结合实际项目落地经验,针对工作流编排中的常用编排组件进行介绍,以及如何在后端调用工作流编排。 2.落地案例 某 …

Ubuntu16.04 安装OpenCV4.5.4 避坑

Ubuntu16.04 安装C版OpenCV4.5.4 Ubuntu16.04 VSCode下cmakeclanglldb调试c 文章目录 Ubuntu16.04 安装C版OpenCV4.5.41. 下载Opencv压缩包2. 安装Opencv-4.5.43. 配置OpenCV的编译环境4.测试是否安装成功 1. 下载Opencv压缩包 下载Opencv压缩包,选择source版本。…

pytest执行报错:found no collectors

今天在尝试使用pytest运行用例的时候出现报错:found no collectors;从两个方向进行排查,一是看文件名和函数名是不是符合规范,命名要是"test_*"格式;二是是否存在修改文件名的情况,如果修改过文件…

嵌入式知识点总结 C/C++ 专题提升(七)-位操作

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.位操作基础 2.如何求解整型数的二进制表示中1的个数 ? 3.如何求解二进制中0的个数 4.交换两个变量的值,不使用第三个变量。即a3,b5,交换之后a5,b3: 5.给定一个…

两台局域网电脑通过飞秋传输大文件失败的解决方案

问题描述: 局域网两台电脑之间传输大文件(超过20G),不想太复杂,就各装个飞秋。但是通过直接发送文件发现总是失败,一会就中断了。 解决方法: 主界面上有一个文件共享的按钮,通过文…

Picsart美易照片编辑器和视频编辑器

使用Picsart美易照片编辑器和视频编辑器,将您的创意变为现实。制作专业水准的拼贴画、设计并添加贴纸、快速移除和更换背景,体验流行编辑,比如 黄金时刻、镜中自拍、复古噪点滤镜或千禧滤镜。Picsart美易是一款一体式编辑器,拥有众…

AR智慧点巡检系统探究和技术方案设计

一、项目背景 随着工业生产规模的不断扩大和设备复杂度的提升,传统的人工点巡检方式效率低下、易出错,难以满足现代化企业对设备运行可靠性和安全性的要求。AR(增强现实)技术的发展为点巡检工作带来了新的解决方案,通…

游戏设备升级怎么选?RTX4070独显,ToDesk云电脑更具性价比

过新年、添喜气!正逢节期来临不知道各位是否都跟小编一样在考虑购置生活中的各样所需呐? 25年可谓是3A游戏大作之年,例如《GTA6》《文明7》《死亡搁浅2》《刺客信条:影》下半年落地的《塞尔达传说:新篇章》《生化危机9…

算法刷题笔记——图论篇

这里写目录标题 理论基础图的基本概念图的种类度 连通性连通图强连通图连通分量强连通分量 图的构造邻接矩阵邻接表 图的遍历方式 深度优先搜索理论基础dfs 与 bfs 区别dfs 搜索过程深搜三部曲所有可达路径广度优先搜索理论基础广搜的使用场景广搜的过程 岛屿数量孤岛的总面积沉…

怎么使用python 调用高德地图api查询位置和导航?

环境: python 3.10 问题描述: 怎么使用python 调用高德地图api查询位置和导航? 解决方案: 要使用Python调用高德地图API查询位置和导航,需要先注册高德开发者账号并获取API Key。以下是基本步骤: 1. 注册高德开…

【阿里云】使用docker安装nginx后可以直接访问

一、创建目录 mkdir -p config/{cert,conf.d} html logs二、上传nginx.conf的配置文件 user nginx; worker_processes auto;error_log /var/log/nginx/error.log notice; pid /var/run/nginx.pid;events {worker_connections 1024; }http {include /etc/ngin…

Fisco-Bcos-java-SDK 利用java与fisco-Bcos区块链上的智能合约交互(以HelloWorld为例)

Fisco-Bcos-java-SDK 利用java与fisco-Bcos区块链上的智能合约交互(以HelloWorld为例) 一、部署智能合约 1、编写智能合约 此处用最简单的HelloWorld合约作为例子 包含两个方法和一个构造函数 构造函数:当合约部署的时候 执行构造函数 将…

DearMom婴儿车:书籍点亮希望,为乡村留守儿童架起知识桥梁

近日,DearMom婴儿车携手中国社会福利基金会来到河南上蔡赵庄小学,成功举办了一场意义非凡的公益助学活动,这是他们第二次以实际行动诠释企业社会责任。此次活动,品牌方致力于以书籍为媒介,为乡村留守儿童开拓视野、丰富…

备赛蓝桥杯之第十五届职业院校组省赛第二题:分享点滴

提示:本篇文章仅仅是作者自己目前在备赛蓝桥杯中,自己学习与刷题的学习笔记,写的不好,欢迎大家批评与建议 由于个别题目代码量与题目量偏大,请大家自己去蓝桥杯官网【连接高校和企业 - 蓝桥云课】去寻找原题&#xff0…