《keras 3 内卷神经网络》

keras 3 内卷神经网络

作者:Aritra Roy Gosthipaty
创建日期:2021/07/25
最后修改时间:2021/07/25
描述:深入研究特定于位置和通道无关的“内卷”内核。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源


介绍

卷积一直是大多数现代神经的基础 计算机视觉网络。卷积核是 空间不可知且特定于通道。因此,它无法 适应不同的视觉模式,包括 不同的空间位置。除了与位置相关的问题外, 卷积的感受野对捕获提出了挑战 远程空间交互。

为了解决上述问题,Li 等人。重新考虑属性 卷积 in Involution: Inverting the Interence of Convolution for VisualRecognition. 作者提出了“内卷核”,即特定于位置的 通道不可知。由于操作的特定位置性质, 作者说,自我注意属于 退化。

此示例描述了 involution 内核,比较了两个图像 分类模型,一个具有卷积,另一个具有 内卷,并试图与自我关注相提并论。


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras
import matplotlib.pyplot as plt

# Set seed for reproducibility.
tf.random.set_seed(42)

卷积

卷积仍然是计算机视觉深度神经网络的支柱。 要理解 Involution,有必要谈谈 卷积操作。

考虑一个维度为 HW 和 C_in 的输入张量 X。我们采用 C_out 个卷积内核的集合,每个 形状 KK C_in。使用 multiply-add 运算 输入张量和我们获得输出张量 Y 的内核 尺寸 HW C_out

在上图中。这使得形状为 H 的输出张量 W 和 3.可以注意到,卷积核并不依赖于 输入张量的空间位置,使其与位置无关。另一方面,output 中的每个通道 Tensor 基于特定的卷积滤波器,这使得 IS 特定于通道C_out=3


退化

这个想法是有一个既特定于位置与通道无关的操作。尝试实现这些特定属性姿势 一个挑战。具有固定数量的内卷 kernel(对于每个 空间位置),我们将无法处理可变分辨率 input 张量。

为了解决这个问题,作者考虑生成每个 核以特定空间位置为条件。通过这种方法,我们 应该能够轻松处理可变分辨率的输入张量。 下图提供了有关此内核生成的直观 方法。

class Involution(keras.layers.Layer):
    def __init__(
        self, channel, group_number, kernel_size, stride, reduction_ratio, name
    ):
        super().__init__(name=name)

        # Initialize the parameters.
        self.channel = channel
        self.group_number = group_number
        self.kernel_size = kernel_size
        self.stride = stride
        self.reduction_ratio = reduction_ratio

    def build(self, input_shape):
        # Get the shape of the input.
        (_, height, width, num_channels) = input_shape

        # Scale the height and width with respect to the strides.
        height = height // self.stride
        width = width // self.stride

        # Define a layer that average pools the input tensor
        # if stride is more than 1.
        self.stride_layer = (
            keras.layers.AveragePooling2D(
                pool_size=self.stride, strides=self.stride, padding="same"
            )
            if self.stride > 1
            else tf.identity
        )
        # Define the kernel generation layer.
        self.kernel_gen = keras.Sequential(
            [
                keras.layers.Conv2D(
                    filters=self.channel // self.reduction_ratio, kernel_size=1
                ),
                keras.layers.BatchNormalization(),
                keras.layers.ReLU(),
                keras.layers.Conv2D(
                    filters=self.kernel_size * self.kernel_size * self.group_number,
                    kernel_size=1,
                ),
            ]
        )
        # Define reshape layers
        self.kernel_reshape = keras.layers.Reshape(
            target_shape=(
                height,
                width,
                self.kernel_size * self.kernel_size,
                1,
                self.group_number,
            )
        )
        self.input_patches_reshape = keras.layers.Reshape(
            target_shape=(
                height,
                width,
                self.kernel_size * self.kernel_size,
                num_channels // self.group_number,
                self.group_number,
            )
        )
        self.output_reshape = keras.layers.Reshape(
            target_shape=(height, width, num_channels)
        )

    def call(self, x):
        # Generate the kernel with respect to the input tensor.
        # B, H, W, K*K*G
        kernel_input = self.stride_layer(x)
        kernel = self.kernel_gen(kernel_input)

        # reshape the kerenl
        # B, H, W, K*K, 1, G
        kernel = self.kernel_reshape(kernel)

        # Extract input patches.
        # B, H, W, K*K*C
        input_patches = tf.image.extract_patches(
            images=x,
            sizes=[1, self.kernel_size, self.kernel_size, 1],
            strides=[1, self.stride, self.stride, 1],
            rates=[1, 1, 1, 1],
            padding="SAME",
        )

        # Reshape the input patches to align with later operations.
        # B, H, W, K*K, C//G, G
        input_patches = self.input_patches_reshape(input_patches)

        # Compute the multiply-add operation of kernels and patches.
        # B, H, W, K*K, C//G, G
        output = tf.multiply(kernel, input_patches)
        # B, H, W, C//G, G
        output = tf.reduce_sum(output, axis=3)

        # Reshape the output kernel.
        # B, H, W, C
        output = self.output_reshape(output)

        # Return the output tensor and the kernel.
        return output, kernel

测试 Involution 层

# Define the input tensor.
input_tensor = tf.random.normal((32, 256, 256, 3))

# Compute involution with stride 1.
output_tensor, _ = Involution(
    channel=3, group_number=1, kernel_size=5, stride=1, reduction_ratio=1, name="inv_1"
)(input_tensor)
print(f"with stride 1 ouput shape: {
       
       output_tensor.shape}")

# Compute involution with stride 2.
output_tensor, _ = Involution(
    channel=3, group_number=1, kernel_size=5, stride=2, reduction_ratio=1, name="inv_2"
)(input_tensor)
print(f"with stride 2 ouput shape: {
       
       output_tensor.shape}")

# Compute involution with stride 1, channel 16 and reduction ratio 2.
output_tensor, _ = Involution(
    channel=16, group_number=1, kernel_size=5, stride=1, reduction_ratio=2, name="inv_3"
)(input_tensor)
print(
    "with channel 16 and reduction ratio 2 ouput shape: {}".format(output_tensor.shape)
)
with stride 1 ouput shape: (32, 256, 256, 3) with stride 2 ouput shape: (32, 128, 128, 3) with channel 16 and reduction ratio 2 ouput shape: (32, 256, 256, 3) 

图像分类

在本节中,我们将构建一个图像分类器模型。会有 是两个模型,一个带有卷积,另一个带有内卷。

图像分类模型深受 Google 的卷积神经网络 (CNN) 教程的启发。


获取 CIFAR10 数据集

# Load the CIFAR10 dataset.
print("loading the CIFAR10 dataset...")
(
    (train_images, train_labels),
    (
        test_images,
        test_labels,
    ),
) = keras.datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1.
(train_images, test_images) = (train_images / 255.0, test_images / 255.0)

# Shuffle and batch the dataset.
train_ds = (
    tf.data.Dataset.from_tensor_slices((train_images, train_labels))
    .shuffle(256)
    .batch(256)
)
test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(256)
loading the CIFAR10 dataset... 

可视化数据

class_names = [
    "airplane",
    "automobile",
    "bird",
    "cat",
    "deer",
    "dog",
    "frog",
    "horse",
    "ship",
    "truck",
]

plt.figure(figsize=(10, 10))
for i in range(25):
    plt.subplot(5, 5, i + 1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i])
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

PNG 格式


卷积神经网络

# Build the conv model.
print("building the convolution model...")
conv_model = keras.Sequential(
    [
        keras.layers.Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding="same"),
        keras.layers.ReLU(name="relu1"),
        keras.layers.MaxPooling2D((2, 2)),
        keras.layers.Conv2D(64, (3, 3), padding="same"),
        keras.layers.ReLU(name="relu2"),
        keras.layers.MaxPooling2D((2, 2)),
        keras.layers.Conv2D(64, (3, 3), padding="same"),
        keras.layers.ReLU(name="relu3"),
        keras.layers.Flatten(),
        keras.layers.Dense(64, activation="relu"),
        keras.layers.Dense(10),
    ]
)

# Compile the mode with the necessary loss function and optimizer.
print("compiling the convolution model...")
conv_model.compile(
    optimizer="adam",
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=["accuracy"],
)

# Train the model.
print("conv model training...")
conv_hist = conv_model.fit(train_ds, epochs=20, validation_data=test_ds)
building the convolution model... compiling the convolution model... conv model training... Epoch 1/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 6s 15ms/step - accuracy: 0.3068 - loss: 1.9000 - val_accuracy: 0.4861 - val_loss: 1.4593 Epoch 2/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.5153 - loss: 1.3603 - val_accuracy: 0.5741 - val_loss: 1.1913 Epoch 3/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.5949 - loss: 1.1517 - val_accuracy: 0.6095 - val_loss: 1.0965 Epoch 4/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6414 - loss: 1.0330 - val_accuracy: 0.6260 - val_loss: 1.0635 Epoch 5/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6690 - loss: 0.9485 - val_accuracy: 0.6622 - val_loss: 0.9833 Epoch 6/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6951 - loss: 0.8764 - val_accuracy: 0.6783 - val_loss: 0.9413 Epoch 7/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7122 - loss: 0.8167 - val_accuracy: 0.6856 - val_loss: 0.9134 Epoch 8/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7299 - loss: 0.7709 - val_accuracy: 0.7001 - val_loss: 0.8792 Epoch 9/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7467 - loss: 0.7288 - val_accuracy: 0.6992 - val_loss: 0.8821 Epoch 10/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7591 - loss: 0.6982 - val_accuracy: 0.7235 - val_loss: 0.8237 Epoch 11/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7725 - loss: 0.6550 - val_accuracy: 0.7115 - val_loss: 0.8521 Epoch 12/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7808 - loss: 0.6302 - val_accuracy: 0.7051 - val_loss: 0.8823 Epoch 13/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7860 - loss: 0.6101 - val_accuracy: 0.7122 - val_loss: 0.8635 Epoch 14/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7998 - loss: 0.5786 - val_accuracy: 0.7214 - val_loss: 0.8348 Epoch 15/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8117 - loss: 0.5473 - val_accuracy: 0.7139 - val_loss: 0.8835 Epoch 16/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8168 - loss: 0.5267 - val_accuracy: 0.7155 - val_loss: 0.8840 Epoch 17/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8266 - loss: 0.5022 - val_accuracy: 0.7239 - val_loss: 0.8576 Epoch 18/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8374 - loss: 0.4750 - val_accuracy: 0.7262 - val_loss: 0.8756 Epoch 19/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8452 - loss: 0.4505 - val_accuracy: 0.7235 - val_loss: 0.9049 Epoch 20/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.8531 - loss: 0.4283 - val_accuracy: 0.7304 - val_loss: 0.8962 

内卷神经网络

# Build the involution model.
print("building the involution model...")

inputs = keras.Input(shape=(32, 32, 3))
x, _ = Involution(
    channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_1"
)(inputs)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
    channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_2"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
    channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_3"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(64, activation="relu")(x)
outputs = keras.layers.Dense(10)(x)

inv_model = keras.Model(inputs=[inputs], outputs=[outputs], name="inv_model")

# Compile the mode with the necessary loss function and optimizer.
print("compiling the involution model...")
inv_model.compile(
    optimizer="adam",
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=["accuracy"],
)

# train the model
print("inv model training...")
inv_hist = inv_model.fit(train_ds, epochs=20, validation_data=test_ds)
building the involution model... compiling the involution model... inv model training... Epoch 1/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step - accuracy: 0.1369 - loss: 2.2728 - val_accuracy: 0.2716 - val_loss: 2.1041 Epoch 2/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.2922 - loss: 1.9489 - val_accuracy: 0.3478 - val_loss: 1.8275 Epoch 3/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.3477 - loss: 1.8098 - val_accuracy: 0.3782 - val_loss: 1.7435 Epoch 4/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.3741 - loss: 1.7420 - val_accuracy: 0.3901 - val_loss: 1.6943 Epoch 5/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.3931 - loss: 1.6942 - val_accuracy: 0.4007 - val_loss: 1.6639 Epoch 6/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4057 - loss: 1.6622 - val_accuracy: 0.4108 - val_loss: 1.6494 Epoch 7/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4134 - loss: 1.6374 - val_accuracy: 0.4202 - val_loss: 1.6363 Epoch 8/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4200 - loss: 1.6166 - val_accuracy: 0.4312 - val_loss: 1.6062 Epoch 9/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4286 - loss: 1.5949 - val_accuracy: 0.4316 - val_loss: 1.6018 Epoch 10/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4346 - loss: 1.5794 - val_accuracy: 0.4346 - val_loss: 1.5963 Epoch 11/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4395 - loss: 1.5641 - val_accuracy: 0.4388 - val_loss: 1.5831 Epoch 12/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4445 - loss: 1.5502 - val_accuracy: 0.4443 - val_loss: 1.5826 Epoch 13/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4493 - loss: 1.5391 - val_accuracy: 0.4497 - val_loss: 1.5574 Epoch 14/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4528 - loss: 1.5255 - val_accuracy: 0.4547 - val_loss: 1.5433 Epoch 15/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.4575 - loss: 1.5148 - val_accuracy: 0.4548 - val_loss: 1.5438 Epoch 16/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4599 - loss: 1.5072 - val_accuracy: 0.4581 - val_loss: 1.5323 Epoch 17/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4664 - loss: 1.4957 - val_accuracy: 0.4598 - val_loss: 1.5321 Epoch 18/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4701 - loss: 1.4863 - val_accuracy: 0.4575 - val_loss: 1.5302 Epoch 19/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4737 - loss: 1.4790 - val_accuracy: 0.4676 - val_loss: 1.5233 Epoch 20/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4771 - loss: 1.4740 - val_accuracy: 0.4719 - val_loss: 1.5096 

比较

在本节中,我们将查看这两个模型并比较 几个指针。

参数

可以看到,在类似的架构中,CNN 中的 parameters 比 INN(内卷神经网络)大得多。

conv_model.summary()

inv_model.summary()
Model: "sequential_3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d_6 (Conv2D)               │ (None, 32, 32, 32)        │        896 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu1 (ReLU)                    │ (None, 32, 32, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 16, 16, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_7 (Conv2D)               │ (None, 16, 16, 64)        │     18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu2 (ReLU)                    │ (None, 16, 16, 64)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 8, 8, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_8 (Conv2D)               │ (None, 8, 8, 64)          │     36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu3 (ReLU)                    │ (None, 8, 8, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (None, 4096)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 64)                │    262,208 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_1 (Dense)                 │ (None, 10)                │        650 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 957,536 (3.65 MB)
 Trainable params: 319,178 (1.22 MB)
 Non-trainable params: 0 (0.00 B)
 Optimizer params: 638,358 (2.44 MB)
Model: "inv_model"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ input_layer_4 (InputLayer)      │ (None, 32, 32, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_1 (Involution)              │ [(None, 32, 32, 3),       │         26 │
│                                 │ (None, 32, 32, 9, 1, 1)]  │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_4 (ReLU)                  │ (None, 32, 32, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_2 (MaxPooling2D)  │ (None, 16, 16, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_2 (Involution)              │ [(None, 16, 16, 3),       │         26 │
│                                 │ (None, 16, 16, 9, 1, 1)]  │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_6 (ReLU)                  │ (None, 16, 16, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_3 (MaxPooling2D)  │ (None, 8, 8, 3)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_3 (Involution)              │ [(None, 8, 8, 3), (None,  │         26 │
│                                 │ 8, 8, 9, 1, 1)]           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_8 (ReLU)                  │ (None, 8, 8, 3)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten_1 (Flatten)             │ (None, 192)               │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_2 (Dense)                 │ (None, 64)                │     12,352 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_3 (Dense)                 │ (None, 10)                │        650 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 39,230 (153.25 KB)
 Trainable params: 13,074 (51.07 KB)
 Non-trainable params: 6 (24.00 B)
 Optimizer params: 26,150 (102.15 KB)

损失和准确率图

在这里,损失图和准确率图表明 INN 很慢 学习者(参数较低)。

plt.figure(figsize=(20, 5))

plt.subplot(1, 2, 1)
plt.title("Convolution Loss")
plt.plot(conv_hist.history["loss"], label="loss")
plt.plot(conv_hist.history["val_loss"], label="val_loss")
plt.legend()

plt.subplot(1, 2, 2)
plt.title("Involution Loss")
plt.plot(inv_hist.history["loss"], label="loss")
plt.plot(inv_hist.history["val_loss"], label="val_loss")
plt.legend()

plt.show()

plt.figure(figsize=(20, 5))

plt.subplot(1, 2, 1)
plt.title("Convolution Accuracy")
plt.plot(conv_hist.history["accuracy"], label="accuracy")
plt.plot(conv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()

plt.subplot(1, 2, 2)
plt.title("Involution Accuracy")
plt.plot(inv_hist.history["accuracy"], label="accuracy")
plt.plot(inv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()

plt.show()

PNG 格式

PNG 格式


可视化 Involution Kernel

为了可视化内核,我们从每个内核中获取 K×K 值的总和 involution 内核。不同空间的所有代表 locations 框架相应的热图。

作者提到:

“我们提议的内卷让人想起自我注意和 基本上可以成为它的广义版本。

通过内核的可视化,我们确实可以获得 图像的映射。学习的内卷核关注 输入张量的单个空间位置。特定于位置的特性使 involution 成为模型的通用空间 自我关注属于其中。

layer_names = ["inv_1", "inv_2", "inv_3"]
outputs = [inv_model.get_layer(name).output[1] for name in layer_names]
vis_model = keras.Model(inv_model.input, outputs)

fig, axes = plt.subplots(nrows=10, ncols=4, figsize=(10, 30))

for ax, test_image in zip(axes, test_images[:10]):
    (inv1_kernel, inv2_kernel, inv3_kernel) = vis_model.predict(test_image[None, ...])
    inv1_kernel = tf.reduce_sum(inv1_kernel, axis=[-1, -2, -3])
    inv2_kernel = tf.reduce_sum(inv2_kernel, axis=[-1, -2, -3])
    inv3_kernel = tf.reduce_sum(inv3_kernel, axis=[-1, -2, -3])

    ax[0].imshow(keras.utils.array_to_img(test_image))
    ax[0].set_title("Input Image")

    ax[1].imshow(keras.utils.array_to_img(inv1_kernel[0, ..., None]))
    ax[1].set_title("Involution Kernel 1")

    ax[2].imshow(keras.utils.array_to_img(inv2_kernel[0, ..., None]))
    ax[2].set_title("Involution Kernel 2")

    ax[3].imshow(keras.utils.array_to_img(inv3_kernel[0, ..., None]))
    ax[3].set_title("Involution Kernel 3")
 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 503ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 

PNG 格式


结论

在此示例中,主要重点是构建一个层,该层 可以很容易地重复使用。虽然我们的比较是基于特定的 任务,请随意使用该图层来完成不同的任务并报告您的 结果。Involution

在我看来,内卷的关键要点是它的 与自我注意的关系。特定位置背后的直觉 通道特异性处理在许多任务中都有意义。

展望未来,您可以:

  • 观看 Yannick 的视频 内卷,以便更好地理解。
  • 试验内卷层的各种超参数。
  • 使用内卷层构建不同的模型。
  • 尝试完全构建不同的内核生成方法。

您可以使用 Hugging Face Hub 上托管的训练模型,并尝试 Hugging Face Spaces 上的演示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/957111.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【json_object】mysql中json_object函数过长,显示不全

问题:json只显示部分 解决: SET GLOBAL group_concat_max_len 1000000; -- 设置为1MB,根据需要调整如果当前在navicat上修改,只有效本次连接和后续会话,重新连接还是会恢复默认值1024 在my.ini配置文件中新增或者修…

云消息队列 Kafka 版 V3 系列荣获信通院“云原生技术创新标杆案例”

2024 年 12 月 24 日,由中国信息通信研究院(以下简称“中国信通院”)主办的“2025 中国信通院深度观察报告会:算力互联网分论坛”,在北京隆重召开。本次论坛以“算力互联网 新质生产力”为主题,全面展示中国…

2024 年度学习总结

目录 1. 前言 2. csdn 对于我的意义 3. 写博客的初衷 3.1 现在的想法 4. 写博客的意义 5. 关于生活和博客创作 5.1 写博客较于纸质笔记的优势 6. 致 2025 1. 前言 不知不觉, 来到 csdn 已经快一年了, 在这一年中, 我通过 csdn 学习到了很多知识, 结识了很多的良师益友…

Spring Boot自动配置原理:如何实现零配置启动

引言 在现代软件开发中,Spring 框架已经成为 Java 开发领域不可或缺的一部分。而 Spring Boot 的出现,更是为 Spring 应用的开发带来了革命性的变化。Spring Boot 的核心优势之一就是它的“自动配置”能力,它极大地简化了 Spring 应用的配置…

1.2.神经网络基础

目录 1.2.神经网络基础 1.2.1.Logistic回归 1.2.2 梯度下降算法 1.2.3 导数 1.2.4 向量化编程 1.2.5 正向传播与反向传播 1.2.6.练习 1.2.神经网络基础 1.2.1.Logistic回归 1.2.1.1.Logistic回归 逻辑回归是一个主要用于二分分类类的算法。那么逻辑回归是给定一个x ,…

Matlab总提示内存不够用,明明小于电脑内存

目录 前言情况1(改matlab最大内存限制)情况2(重启电脑)情况3 前言 在使用matlab中,有时候需要占用的内存并没有超过电脑内存依旧会报错,提示内存不够用,可以尝试下面几种方法,总有一…

使用AI生成金融时间序列数据:解决股市场的数据稀缺问题并提升信噪比

“GENERATIVE MODELS FOR FINANCIAL TIME SERIES DATA: ENHANCING SIGNAL-TO-NOISE RATIO AND ADDRESSING DATA SCARCITY IN A-SHARE MARKET” 论文地址:https://arxiv.org/pdf/2501.00063 摘要 金融领域面临的数据稀缺与低信噪比问题,限制了深度学习在…

深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化

目录 什么是协同过滤算法核心原理基本步骤相似度计算代码实现详解1.流程图2.创建基础的数据结构存储用户评分数据3.计算用户相似度4.获取相似用户5.推荐方法 算法优化建议1. 数据预处理优化去除异常值和噪声数据进行数据标准化使用稀疏矩阵优化存储 2. 相似度计算优化使用局部敏…

react install

react 安装 React 是一个用于构建用户界面的 JavaScript 库。以下是安装 React 的步骤: 使用 Create React App Create React App 是一个官方支持的命令行工具,用于快速搭建 React 应用。 安装 Node.js 和 npm 确保你的计算机上安装了 Node.js 和 npm…

程序员不可能不知道的常见锁策略

前面我们学习过线程不安全问题,我们通过给代码加锁来解决线程不安全问题,在生活中我们也知道有很多种类型的锁,同时在代码的世界当中,也对应着很多类型的锁,今天我们对锁一探究竟! 1. 常见的锁策略 注意: …

智启未来,AI筑梦科技新星”------华清远见成都中心2025冬令营圆满结束

2025年1月11日-16日,华清远见成都中心为期6天的“智启未来,AI筑梦科技新星”2025冬令营活动圆满结束。此次活动吸引了众多对人工智能和无人驾驶技术充满热情的学生参与,共同开启了一段点燃科技梦想的精彩旅程。 报道接待 以AI无人驾驶小车为核…

Debezium日常分享系列之:对于从Oracle数据库进行快照的性能优化

Debezium日常分享系列之:对于从Oracle数据库进行快照的性能优化 源数据库Kafka Connect监控测试结果 源数据库 Oracle 19c,本地,CDB数据库主机的I/O带宽为6 GB/s,由此主机上运行的所有数据库共享临时表空间由42个文件组成&#x…

RabbitMQ--延迟队列

(一)延迟队列 1.概念 延迟队列是一种特殊的队列,消息被发送后,消费者并不会立刻拿到消息,而是等待一段时间后,消费者才可以从这个队列中拿到消息进行消费 2.应用场景 延迟队列的应用场景很多,…

3DsMax设置中文界面

按键盘上的“Win”键,直接输入3dsmax,选择Simplified Chinese打开,之后就都是中文了

opencv在图片上添加中文汉字(c++以及python)

opencv在图片上添加中文汉字(c以及python)_c opencv绘制中文 知乎-CSDN博客 环境: ubuntu18.04 desktopopencv 3.4.15 opencv是不支持中文的。 这里C代码是采用替换原图的像素点来实现的,实现之前我们先了解一下汉字点阵字库。…

线程同步与Mutex

梦想是逃离世界… 文章目录 一、什么是线程同步?二、线程同步机制三、互斥锁(Mutex)四、loock 和 unlock五、Mutex的四种类型 一、什么是线程同步? 线程同步(Thread Synchronization)是多线程编程中的一个重要概念,它…

基于SpringBoot和PostGIS的全球首都信息管理设计与实现

目录 前言 一、首都空间表的设计 1、三张空间表的结构 二、SpringBoot后台管理的设计与实现 1、模型层的实现 2、业务层及控制层实现 三、前端的实现与成果可视化 1、新增数据的保存 2、首都的实际管理成果 3、全球首都信息 四、总结 前言 首都,一个国家的…

计算机网络 (50)两类密码体制

前言 计算机网络中的两类密码体制主要包括对称密钥密码体制(也称为私钥密码体制、对称密码体制)和公钥密码体制(也称为非对称密码体制、公开密钥加密技术)。 一、对称密钥密码体制 定义: 对称密钥密码体制是一种传…

【数据结构篇】顺序表 超详细

目录 一.顺序表的定义 1.顺序表的概念及结构 1.1线性表 2.顺序表的分类 2.1静态顺序表 2.2动态顺序表 二.动态顺序表的实现 1.准备工作和注意事项 2.顺序表的基本接口: 2.0 创建一个顺序表 2.1 顺序表的初始化 2.2 顺序表的销毁 2.3 顺序表的打印 3.顺序…

C 语言雏启:擘画代码乾坤,谛观编程奥宇之初瞰

大家好啊,我是小象٩(๑ω๑)۶ 我的博客:Xiao Xiangζั͡ޓއއ 很高兴见到大家,希望能够和大家一起交流学习,共同进步。* 这一课主要是让大家初步了解C语言,了解我们的开发环境,main函数,库…