16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)

Flink 系列文章

1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接

13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)

16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)

20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上

22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs

30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)


文章目录

  • Flink 系列文章
  • 一、Table & SQL Connectors 示例: Apache Hive
    • 1、支持的Hive版本
    • 2、依赖项
      • 1)、使用 Flink 提供的 Hive jar
      • 2)、用户定义的依赖项
      • 3)、移动 planner jar 包
    • 3、Maven 依赖
    • 4、连接到Hive
    • 5、DDL&DML


本文介绍了Apache Hive连接器的使用,以具体的示例演示了通过java和flink sql cli创建catalog。
本文依赖环境是hadoop、zookeeper、hive、flink环境好用,本文内容以flink1.17版本进行介绍的,具体示例是在1.13版本中运行的(因为hadoop集群环境是基于jdk8的,flink1.17版本需要jdk11)。
更多的内容详见后续关于hive的介绍。

一、Table & SQL Connectors 示例: Apache Hive

Apache Hive 已经成为了数据仓库生态系统中的核心。 它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样它也是一个数据管理平台,可用于发现,定义,和演化数据。

Flink 与 Hive 的集成包含两个层面。

一是利用了 Hive 的 MetaStore 作为持久化的 Catalog,用户可通过HiveCatalog将不同会话中的 Flink 元数据存储到 Hive Metastore 中。 例如,用户可以使用HiveCatalog将其 Kafka 表或 Elasticsearch 表存储在 Hive Metastore 中,并后续在 SQL 查询中重新使用它们。

二是利用 Flink 来读写 Hive 的表。

HiveCatalog的设计提供了与 Hive 良好的兼容性,用户可以"开箱即用"的访问其已有的 Hive 数仓。 您不需要修改现有的 Hive Metastore,也不需要更改表的数据位置或分区。

1、支持的Hive版本

Flink 支持以下的 Hive 版本。

  • 2.3
    2.3.0
    2.3.1
    2.3.2
    2.3.3
    2.3.4
    2.3.5
    2.3.6
    2.3.7
    2.3.8
    2.3.9
  • 3.1
    3.1.0
    3.1.1
    3.1.2
    3.1.3

某些功能是否可用取决于您使用的 Hive 版本,这些限制不是由 Flink 所引起的:

  • Hive 内置函数在使用 Hive-2.3.0 及更高版本时支持。
  • 列约束,也就是 PRIMARY KEY 和 NOT NULL,在使用 Hive-3.1.0 及更高版本时支持。
  • 更改表的统计信息,在使用 Hive-2.3.0 及更高版本时支持。
  • DATE列统计信息,在使用 Hive-2.3.0 及更高版时支持。

2、依赖项

要与 Hive 集成,您需要在 Flink 下的/lib/目录中添加一些额外的依赖包, 以便通过 Table API 或 SQL Client 与 Hive 进行交互。 或者,您可以将这些依赖项放在专用文件夹中,并分别使用 Table API 程序或 SQL Client 的-C或-l选项将它们添加到 classpath 中。

Apache Hive 是基于 Hadoop 之上构建的, 首先您需要 Hadoop 的依赖,请参考 Providing Hadoop classes:

export HADOOP_CLASSPATH=`hadoop classpath`

有两种添加 Hive 依赖项的方法。第一种是使用 Flink 提供的 Hive Jar包。您可以根据使用的 Metastore 的版本来选择对应的 Hive jar。第二个方式是分别添加每个所需的 jar 包。如果您使用的 Hive 版本尚未在此处列出,则第二种方法会更适合。

注意:建议您优先使用 Flink 提供的 Hive jar 包。仅在 Flink 提供的 Hive jar 不满足您的需求时,再考虑使用分开添加 jar 包的方式。

1)、使用 Flink 提供的 Hive jar

下表列出了所有可用的 Hive jar。您可以选择一个并放在 Flink 发行版的/lib/ 目录中。
在这里插入图片描述

2)、用户定义的依赖项

您可以在下方找到不同Hive主版本所需要的依赖项。

  • Hive 2.3.4
/flink-1.17.1
   /lib

       // Flink's Hive connector.Contains flink-hadoop-compatibility and flink-orc jars
       flink-connector-hive_2.12-1.17.1.jar

       // Hive dependencies
       hive-exec-2.3.4.jar

       // add antlr-runtime if you need to use hive dialect
       antlr-runtime-3.5.2.jar
  • Hive 3.1.0
/flink-1.17.1
   /lib

       // Flink's Hive connector
       flink-connector-hive_2.12-1.17.1.jar

       // Hive dependencies
       hive-exec-3.1.0.jar
       libfb303-0.9.3.jar // libfb303 is not packed into hive-exec in some versions, need to add it separately

       // add antlr-runtime if you need to use hive dialect
       antlr-runtime-3.5.2.jar

3)、移动 planner jar 包

把 FLINK_HOME/opt 下的 jar 包 flink-table-planner_2.12-1.17.1.jar 移动到 FLINK_HOME/lib 下,并且将 FLINK_HOME/lib 下的 jar 包 flink-table-planner-loader-1.17.1.jar 移出去。 具体原因请参见 FLINK-25128。你可以使用如下命令来完成移动 planner jar 包的工作:

mv $FLINK_HOME/opt/flink-table-planner_2.12-1.17.1.jar $FLINK_HOME/lib/flink-table-planner_2.12-1.17.1.jar
mv $FLINK_HOME/lib/flink-table-planner-loader-1.17.1.jar $FLINK_HOME/opt/flink-table-planner-loader-1.17.1.jar

只有当要使用 Hive 语法 或者 HiveServer2 endpoint, 你才需要做上述的 jar 包移动。 但是在集成 Hive 的时候,推荐进行上述的操作。

3、Maven 依赖

如果您在构建自己的应用程序,则需要在 mvn 文件中添加以下依赖项。 您应该在运行时添加以上的这些依赖项,而不要在已生成的 jar 文件中去包含它们。

<!-- Flink Dependency -->
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-hive_2.12</artifactId>
  <version>1.17.1</version>
  <scope>provided</scope>
</dependency>

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-api-java-bridge_2.12</artifactId>
  <version>1.17.1</version>
  <scope>provided</scope>
</dependency>

<!-- Hive Dependency -->
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>${hive.version}</version>
    <scope>provided</scope>
</dependency>

4、连接到Hive

通过 TableEnvironment 或者 YAML 配置,使用 Catalog 接口 和 HiveCatalog连接到现有的 Hive 集群。

以下是如何连接到 Hive 的示例:

  • java
EnvironmentSettings settings = EnvironmentSettings.inStreamingMode();
TableEnvironment tableEnv = TableEnvironment.create(settings);

String name            = "myhive";
String defaultDatabase = "mydatabase";
String hiveConfDir     = "/opt/hive-conf";

HiveCatalog hive = new HiveCatalog(name, defaultDatabase, hiveConfDir);
tableEnv.registerCatalog("myhive", hive);

// set the HiveCatalog as the current catalog of the session
tableEnv.useCatalog("myhive");

----------------------示例----------------------------
import java.util.List;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.exceptions.CatalogException;
import org.apache.flink.table.catalog.exceptions.DatabaseNotExistException;
import org.apache.flink.table.catalog.hive.HiveCatalog;

/**
 * @author alanchan
 *
 */
public class TestHiveCatalogDemo {

	/**
	 * @param args
	 * @throws DatabaseNotExistException 
	 * @throws CatalogException 
	 */
	public static void main(String[] args) throws CatalogException, DatabaseNotExistException {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

		String name = "alan_hive";
		// testhive 数据库名称
		String defaultDatabase = "testhive";
		String hiveConfDir = "/usr/local/bigdata/apache-hive-3.1.2-bin/conf";

		HiveCatalog hiveCatalog = new HiveCatalog(name, defaultDatabase, hiveConfDir);
		tenv.registerCatalog("alan_hive", hiveCatalog);
		// 使用注册的catalog
		tenv.useCatalog("alan_hive");

		List<String> tables = hiveCatalog.listTables(defaultDatabase); 
		for (String table : tables) {
			System.out.println("Database:testhive  tables:" + table);
		}
	}

}
  • sql
CREATE CATALOG myhive WITH (
    'type' = 'hive',
    'default-database' = 'mydatabase',
    'hive-conf-dir' = '/opt/hive-conf'
);
-- set the HiveCatalog as the current catalog of the session
USE CATALOG myhive;

------------------具体示例如下----------------------------
Flink SQL> show catalogs;
+-----------------+
|    catalog name |
+-----------------+
| default_catalog |
+-----------------+
1 row in set

Flink SQL> CREATE CATALOG alan_hivecatalog WITH (
>     'type' = 'hive',
>     'default-database' = 'testhive',
>     'hive-conf-dir' = '/usr/local/bigdata/apache-hive-3.1.2-bin/conf'
> );
[INFO] Execute statement succeed.

Flink SQL> show catalogs;
+------------------+
|     catalog name |
+------------------+
| alan_hivecatalog |
|  default_catalog |
+------------------+
2 rows in set

Flink SQL> use alan_hivecatalog;
[ERROR] Could not execute SQL statement. Reason:
org.apache.flink.table.catalog.exceptions.CatalogException: A database with name [alan_hivecatalog] does not exist in the catalog: [default_catalog].

Flink SQL> use catalog alan_hivecatalog;
[INFO] Execute statement succeed.

Flink SQL> show tables;
+-----------------------------------+
|                        table name |
+-----------------------------------+
| alan_hivecatalog_hivedb_testtable |
|                         apachelog |
|                          col2row1 |
|                          col2row2 |
|                       cookie_info |
|                              dual |
|                         dw_zipper |
|                               emp |
|                          employee |
|                  employee_address |
|               employee_connection |
|                 ods_zipper_update |
|                          row2col1 |
|                          row2col2 |
|                            singer |
|                           singer2 |
|                           student |
|                      student_dept |
|               student_from_insert |
|                      student_hdfs |
|                    student_hdfs_p |
|                      student_info |
|                     student_local |
|                 student_partition |
|              t_all_hero_part_msck |
|                     t_usa_covid19 |
|                   t_usa_covid19_p |
|                              tab1 |
|                         tb_dept01 |
|                    tb_dept_bucket |
|                            tb_emp |
|                          tb_emp01 |
|                     tb_emp_bucket |
|                     tb_json_test1 |
|                     tb_json_test2 |
|                          tb_login |
|                      tb_login_tmp |
|                          tb_money |
|                      tb_money_mtn |
|                            tb_url |
|              the_nba_championship |
|                             tmp_1 |
|                        tmp_zipper |
|                         user_dept |
|                     user_dept_sex |
|                             users |
|                 users_bucket_sort |
|                   website_pv_info |
|                  website_url_info |
+-----------------------------------+
49 rows in set

  • ymal
execution:
    ...
    current-catalog: alan_hivecatalog  # set the HiveCatalog as the current catalog of the session
    current-database: testhive
    
catalogs:
   - name: alan_hivecatalog  
     type: hive
     hive-conf-dir: /usr/local/bigdata/apache-hive-3.1.2-bin/conf

下表列出了通过 YAML 文件或 DDL 定义 HiveCatalog 时所支持的参数。

在这里插入图片描述

5、DDL&DML

在 Flink 中执行 DDL 操作 Hive 的表、视图、分区、函数等元数据时,参考:33、Flink之hive
Flink 支持 DML 写入 Hive 表,请参考:33、Flink之hive
以上,介绍了Apache Hive连接器的使用,以具体的示例演示了通过java和flink sql cli创建catalog。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/95699.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开发工具——IDE安装 / IDEA子module依赖导入失败编译提示xx找不到符号 / IDEA在Git提交时卡顿

近期换了工作电脑&#xff0c;公司的IT团队不够给力&#xff0c;不能复制电脑系统&#xff0c;所以又到了需要重装IDE配置开发环境的时候了&#xff1b;在安装和导入Java编译器IDEA的时候遇到一些"棘手"问题&#xff0c;这里整理下解决方法以备不时之需&#xff1b; …

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...

原文链接&#xff1a;http://tecdat.cn/?p23800 由于空气污染对公众健康的不利影响&#xff0c;人们一直非常关注。世界各国的环境部门都通过各种方法&#xff08;例如地面观测网络&#xff09;来监测和评估空气污染问题&#xff08;点击文末“阅读原文”获取完整代码数据&…

ChatGPT⼊门到精通(4):ChatGPT 为何⽜逼

⼀、通⽤型AI 在我们原始的幻想⾥&#xff0c;AI是基于对海量数据的学习&#xff0c;锻炼出⼀个⽆所不知⽆所不能的模 型&#xff0c;并借助计算机的优势&#xff08;计算速度、并发可能&#xff09;等碾压⼈类。 但我们⽬前的AI&#xff0c;不管是AlphaGo还是图像识别算法&am…

加强版python连接飞书通知——本地电脑PC端通过网页链接打开本地已安装软件(调用注册表形式,以漏洞扫描工具AppScan为例)

前言 如果你想要通过超链接来打开本地应用,那么你首先你需要将你的应用添入windows注册表中(这样网页就可以通过指定代号来调用程序),由于安全性的原因所以网页无法直接通过输入绝对路径来调用本地文件。 一、通过创建reg文件自动配置注册表 创建文本文档,使用记事本打开…

红黑树(AVL树的优化)上

红黑树略胜AVL树 AVL树是一颗高度平衡搜索二叉树&#xff1a; 要求左右高度差不超过1&#xff08;严格平衡&#xff09; 有的大佬认为AVL树太过严格&#xff0c;对平衡的要求越严格&#xff0c;会带来更多的旋转&#xff08;旋转也还是会有一定的消耗&#xff01;&#xff01;…

el-table动态生成多级表头的表格(js + ts)

展示形式&#xff1a; 详细代码&#xff1a; &#xff08;js&#xff09; <template><div><el-table :data"tableData" style"width: 100%"><el-table-column label"题目信息" align"center"><el-table-…

Matlab图像处理-垂直镜像

垂直镜像 图像的垂直镜像操作是以原图像的水平中轴线为中心&#xff0c;将图像分为上下两部分进行对称变换。 设原始图像的宽为w&#xff0c;高为h&#xff0c;原始图像中的点为(&#x1d465;0,&#x1d466;0)(x_0,y_0)&#xff0c;对称变换后的点为(&#x1d465;1,&#…

阿里云大数据实战记录8:拆开 json 的每一个元素,一行一个

目录 一、前言二、目标介绍三、使用 pgsql 实现3.1 拆分 content 字段3.2 拆分 level 字段3.3 拼接两个拆分结果 四、使用 ODPS SQL 实现4.1 拆分 content 字段4.2 拆分 level 字段4.3 合并拆分 五、使用 MySQL 实现六、总结 一、前言 商业场景中&#xff0c;经常会出现新的业…

第62步 深度学习图像识别:多分类建模(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期我们基于TensorFlow环境做了图像识别的多分类任务建模。 本期以健康组、肺结核组、COVID-19组、细菌性&#xff08;病毒性&#xff09;肺炎组为数据集&#xff0c;基于Pytorch环境&#xff0c;构建SqueezeNet多分类模型&#xff0…

MyBatis-Plus 总结

MyBatis-Plus简介 官网&#xff1a;https://baomidou.com/ GitHub&#xff1a;https://github.com/baomidou/mybatis-plus Gitee&#xff1a;https://gitee.com/baomidou/mybatis-plus 简介 MyBatis-Plus &#xff08;简称 MP&#xff09;是一个 MyBatis的增强工具&#x…

Maven - 使用maven-release-plugin规范化版本发布

文章目录 Maven Release plugin – IntroductionMaven Release plugin – Plugin DocumentationMaven Release plugin – Usage实战案例 Maven Release plugin – Introduction Maven Release Plugin&#xff08;Maven 发布插件&#xff09;是一个用于帮助在Maven项目中执行版…

hadoop学习:mapreduce入门案例二:统计学生成绩

这里相较于 wordcount&#xff0c;新的知识点在于学生实体类的编写以及使用 数据信息&#xff1a; 1. Student 实体类 import org.apache.hadoop.io.WritableComparable;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;public class Stude…

java八股文面试[多线程]——合适的线程数是多少

知识来源&#xff1a; 【并发与线程】 合适的线程数量是多少&#xff1f;CPU 核心数和线程数的关系&#xff1f;_哔哩哔哩_bilibili 【2023年面试】程序开多少线程合适_哔哩哔哩_bilibili

LeetCode 44题:通配符匹配

题目 给你一个输入字符串 (s) 和一个字符模式 (p) &#xff0c;请你实现一个支持 ? 和 * 匹配规则的通配符匹配&#xff1a; ? 可以匹配任何单个字符。* 可以匹配任意字符序列&#xff08;包括空字符序列&#xff09;。 判定匹配成功的充要条件是&#xff1a;字符模式必须…

Python实现自动关键词提取

随着互联网的发展&#xff0c;越来越多的人喜欢在网络上阅读小说。本文将通过详细示例&#xff0c;向您介绍如何使用Python编写爬虫程序来获取网络小说&#xff0c;并利用自然语言处理技术实现自动文摘和关键词提取功能。 1. 网络小说数据抓取 首先&#xff0c;请确保已安装必…

Kotlin协程简述与上下文和调度器(Dispatchers )

协程概述 子程序或者称为函数&#xff0c;在所有的语言中都是层级调用&#xff0c;如&#xff1a;A调用B&#xff0c;B在执行过程中又调用了C&#xff0c;C执行完毕返回&#xff0c;B执行完毕返回&#xff0c;最后是A执行完毕。所以子程序是 通过栈来实现的&#xff0c;一个线…

使用安全复制命令scp在Windows系统和Linux系统之间相互传输文件

现在已经有很多远程控制服务器的第三方软件平台&#xff0c;比如FinalShell&#xff0c;MobaXterm等&#xff0c;半可视化界面&#xff0c;使用起来非常方便和友好&#xff0c;两个系统之间传输文件直接拖就行&#xff0c;当然也可以使用命令方式在两个系统之间相互传递。 目录…

git 基础

1.下载安装Git&#xff08;略&#xff09; 2.打开git bash窗口 3.查看版本号、设置用户名和邮箱 用户名和邮箱可以随意起&#xff0c;与GitHub的账号邮箱没有关系 4.初始化git 在D盘中新建gitspace文件夹&#xff0c;并在该目录下打开git bash窗口 git init 初始化完成后会…

基于深度学习的机器视觉表计识别

01 引言 针对仪表自动读数问题&#xff0c;新型数字式仪表的读数比较方便&#xff0c;现阶段已经有非常多成熟的方案落地&#xff0c;而针对传统指针式仪表自动读数的现有方案还不够成熟&#xff0c;存在识别不精确、易受环境干扰等问题&#xff0c;是亟待研究和攻克的难题。我…

ICS PA1

ICS PA1 init.shmake 编译加速ISA计算机是个状态机程序是个状态机准备第一个客户程序parse_argsinit_randinit_loginit_meminit_isa load_img剩余的初始化工作运行第一个客户程序调试&#xff1a;零断点TUI 基础设施单步执行打印寄存器状态扫描内存 表达式求值词法分析递归求值…