R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...

原文链接:http://tecdat.cn/?p=23800

由于空气污染对公众健康的不利影响,人们一直非常关注。世界各国的环境部门都通过各种方法(例如地面观测网络)来监测和评估空气污染问题点击文末“阅读原文”获取完整代码数据)。

介绍

全球的地面站及时测量了许多空气污染物,例如臭氧、一氧化碳、颗粒物。EPA(环境保护署)提供了空气污染数据,本文选择了颗粒物2.5(PM2.5)和空气质量指数(AQI)这两个关键变量,以可视化和分析空气污染的趋势和模式。PM2.5代表直径小于2.5微米的颗粒物浓度,AQI是综合考虑所有主要污染物的空气污染状况的整体指标。具体来说,此工作的数据源列出如下:

  • 监测人员每天的PM 2.5浓度水平和AQI指数数据;

  • 县一级的AQI年度摘要。

数据预处理

每日站点数据包含每个地面站与PM2.5相关的各种属性。有关站信息,污染物的关键变量通过以下代码从原始数据中过滤掉。重命名过滤后的数据框的列名,以方便以下分析。

#导入数据
aqi <- read_csv("aqi.csv")

37a048b958be01d2cc343f828fe49331.png

daily<- read_csv("daily.csv")

0c0b07a52ad6e789eecc5ccb93be8d30.png

names(data) <- c( "date", 
                     "pm25", "aqi",  "long", "lat")

统计摘要

对点级PM2.5浓度和县级AQI指数的基本统计描述可以帮助更好地理解这两个变量。在这里,直方图和箱形图用于可视化PM2.5浓度和AQI的分布特征。每日AQI指数可衡量空气污染的严重程度,可用于根据AQI的值将天数分为不同的类别。就空气污染水平而言,通常可以将天气分为四类,包括良好,中度,不健康和危险。

本报告中使用的县级AQI数据包括四个类别变量,代表每个类别的天数。下面的代码直观地显示了四个类别变量的分布。根据直方图,大多数县在整年总体空气质量良好,这可以通过良好''分布的偏斜来表示,不健康''和危险''的0天左右的分布间隔非常窄。此外,良好''和中等''的分布显示出相反的偏斜,这表明空气质量中等的日子在全年并不典型,因为中等''的分布集中在50天以下,而``良好''的分布在250天以上。

## 县域内aqi的直方图
vi <-
  aqi %>% 
  select(`好', `中等', `不健康', `危险') %>%

ggplot(data = vi )

ee061bdd556ae3fdf72a544f885bfe4a.png

县级数据代表空气污染的平均水平。来自地面站的PM2.5和AQI的点级测量描述了空气污染的详细情况和当地情况。


点击标题查阅往期内容

d05871020140db8a4ca453860ba10bfa.png

R语言空间可视化:绘制英国脱欧投票地图

outside_default.png

左右滑动查看更多

outside_default.png

01

443b8b8e0cdc38f7c48d6a3b9bccf56a.png

02

6ad5d29021e0f50728ac82dd15c5984b.png

03

947f8fca13c2c672cd1dfcf5d41d206f.png

04

5a0882dab6d9c7b681526f1cf821b48c.png

站级的PM2.5和AQI的分布如下所示。两种分布都显示出正偏度,AQI聚集在50附近,而PM2.5低于25。在这一年中,很少出现两个变量都具有高值的站点。

## ##AQI和PM2.5的直方图
  pmaqi  %>%
ggplot(data) +
  geom_histogram(aes(x = value), bins = 35) +

f1c4a0c8aa81242d46b5b4507673eb9d.png

ggplot(data) +
  geom_boxplot(aes(x =class,  y = value))

550ca95ffe55bd1f490265c257527bda.png

时间变化

每日数据记录了2018年监测站点每天的观测时间序列,可用于探索PM2.5和AQI的趋势。首先,针对每种数据对每种状态下站点的测量值求平均。选择了七个州的时间序列以显示其一年中的变化,如下所示。从该图可以看出,南部和西部各州在年初就经历了严重的空气污染问题。趋势曲线的高峰表明,下半年的空气质量均较差。

##按州和日排列
vis <- 
  select(state, date, pm25, aqi) %>%
  group_by(state, date) %>%
  summarise(pm25 = mean(pm25), aqi = mean(aqi)) %>%

ggplot(data = vis)

19702e87401c5bda6d3d6d9b1a610082.png

为了显示总体变化,每天汇总来自所有监视的测量值。一年中的总体变化绘制如下。我们可以看到,AQI和PM2.5的变化趋势显示出相似的模式,而夏季和冬季的空气污染更为严重。

##按天数计算
  select(date, pm25, aqi) %>%
  group_by(date) %>%
  summarise( mean(pm25), mean(aqi)) %>%
ggplot(data = vis) +

0e27fb22f5b6f236b146f18d79334547.png

空间分布

汇总了针对不同州的县级AQI指数,以探索每个州的空气质量的空间变化。下图通过渐变颜色绘制了变量良好天气的不同平均值。该地图显示了各州空气质量良好的日子。从地图上可以看出,北部和东部地区的空气条件比其他州更好。

##按州汇总aqi(区域水平)。

vis <- 
  aqi %>%
  group_by(State) %>%


ggplot() +
  geom_polygon(aes(x = long, y = lat, group = group, fill = good)

77e2dc09571d42fe6a84eb24fcfbd52f.png

下面还绘制了不健康天数变量的平均值,这证实了以前的观察结果,即东部各州的空气条件较好。

ggplot() +
  geom_polygon(aes(x = long, y = lat, group ,  fill ),          
  scale\_fill\_distiller

9525c27cc0ee721e189a14dfc49dd974.png

每个站点的站点级别测量值汇总为年平均值。下图显示了美国年平均PM2.5浓度的空间分布。绿色点表示较低的PM2.5浓度。西部的测站测得的PM2.5浓度较高。

## 数据的汇总
###用于pm2.5
  pmaqi %>%
  summarise(pm25 = mean(pm25), aqi = mean(aqi), long = mean(long), lat = mean(lat)) %>%
ggplot() +
  geom_polygon(aes(x = long, y = lat, group = group)

09dd6e2335a4fb191e4c021d993b454a.png

AQI可以提供更全面的空气状况度量。站点上的点级AQI映射如下。由于AQI考虑了许多典型污染物,因此与PM2.5的模式相比,AQI的分布显示出不同的模式。

###aqi指数
vi<- vi\[class == "aqi", \]
ggplot(vi) +
  geom_polygon(aes(x = long, y = lat, group = group)

a9eaa7789b64d72e798ec294095fb4a2.png

结论

本报告利用了空气污染数据和R的可视化,从时空维度探讨了空气污染的分布和格局。从数据中可以识别出PM2.5和AQI的时空变化。夏季和冬季均遇到空气污染问题。西部和南部的州比北部和东部的州更容易遭受空气污染问题。

c9f041f87bedab53345149e73a829dbb.jpeg

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

547c8c4f5129821f9465b1a0b56d0d1a.png

e3f7529895feed5221373c793eab0597.jpeg

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)》。

4439aab458a97cb0b2bde515688277f8.jpeg

d12cf5d7b1974ff7b30a149e42e78de4.png

点击标题查阅往期内容

上海无印良品地理空间分布特征与选址策略可视化研究

R语言空间可视化:绘制英国脱欧投票地图

R语言在地图上绘制散点饼图可视化 

r语言空间可视化绘制道路交通安全事故地图

在GIS中用ggmap地理空间数据分析

tableau的骑行路线地理数据可视化

R语言推特twitter转发可视化分析

618电商大数据分析可视化报告

用RSHINY DASHBOARD可视化美国投票记录

python主题LDA建模和t-SNE可视化

R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告

R语言动态图可视化:如何、创建具有精美动画的图

Tableau 数据可视化:探索性图形分析新生儿死亡率数据

R语言动态可视化:制作历史全球平均温度的累积动态折线图动画gif视频图

4e6e814504b2198fa865820a2dbb3f1d.png

6a4904cfd2abc13b06969e210f615c15.jpeg

a39e47d5594b842edf50cd013c44cb50.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/95696.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT⼊门到精通(4):ChatGPT 为何⽜逼

⼀、通⽤型AI 在我们原始的幻想⾥&#xff0c;AI是基于对海量数据的学习&#xff0c;锻炼出⼀个⽆所不知⽆所不能的模 型&#xff0c;并借助计算机的优势&#xff08;计算速度、并发可能&#xff09;等碾压⼈类。 但我们⽬前的AI&#xff0c;不管是AlphaGo还是图像识别算法&am…

加强版python连接飞书通知——本地电脑PC端通过网页链接打开本地已安装软件(调用注册表形式,以漏洞扫描工具AppScan为例)

前言 如果你想要通过超链接来打开本地应用,那么你首先你需要将你的应用添入windows注册表中(这样网页就可以通过指定代号来调用程序),由于安全性的原因所以网页无法直接通过输入绝对路径来调用本地文件。 一、通过创建reg文件自动配置注册表 创建文本文档,使用记事本打开…

红黑树(AVL树的优化)上

红黑树略胜AVL树 AVL树是一颗高度平衡搜索二叉树&#xff1a; 要求左右高度差不超过1&#xff08;严格平衡&#xff09; 有的大佬认为AVL树太过严格&#xff0c;对平衡的要求越严格&#xff0c;会带来更多的旋转&#xff08;旋转也还是会有一定的消耗&#xff01;&#xff01;…

el-table动态生成多级表头的表格(js + ts)

展示形式&#xff1a; 详细代码&#xff1a; &#xff08;js&#xff09; <template><div><el-table :data"tableData" style"width: 100%"><el-table-column label"题目信息" align"center"><el-table-…

Matlab图像处理-垂直镜像

垂直镜像 图像的垂直镜像操作是以原图像的水平中轴线为中心&#xff0c;将图像分为上下两部分进行对称变换。 设原始图像的宽为w&#xff0c;高为h&#xff0c;原始图像中的点为(&#x1d465;0,&#x1d466;0)(x_0,y_0)&#xff0c;对称变换后的点为(&#x1d465;1,&#…

阿里云大数据实战记录8:拆开 json 的每一个元素,一行一个

目录 一、前言二、目标介绍三、使用 pgsql 实现3.1 拆分 content 字段3.2 拆分 level 字段3.3 拼接两个拆分结果 四、使用 ODPS SQL 实现4.1 拆分 content 字段4.2 拆分 level 字段4.3 合并拆分 五、使用 MySQL 实现六、总结 一、前言 商业场景中&#xff0c;经常会出现新的业…

第62步 深度学习图像识别:多分类建模(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期我们基于TensorFlow环境做了图像识别的多分类任务建模。 本期以健康组、肺结核组、COVID-19组、细菌性&#xff08;病毒性&#xff09;肺炎组为数据集&#xff0c;基于Pytorch环境&#xff0c;构建SqueezeNet多分类模型&#xff0…

MyBatis-Plus 总结

MyBatis-Plus简介 官网&#xff1a;https://baomidou.com/ GitHub&#xff1a;https://github.com/baomidou/mybatis-plus Gitee&#xff1a;https://gitee.com/baomidou/mybatis-plus 简介 MyBatis-Plus &#xff08;简称 MP&#xff09;是一个 MyBatis的增强工具&#x…

Maven - 使用maven-release-plugin规范化版本发布

文章目录 Maven Release plugin – IntroductionMaven Release plugin – Plugin DocumentationMaven Release plugin – Usage实战案例 Maven Release plugin – Introduction Maven Release Plugin&#xff08;Maven 发布插件&#xff09;是一个用于帮助在Maven项目中执行版…

hadoop学习:mapreduce入门案例二:统计学生成绩

这里相较于 wordcount&#xff0c;新的知识点在于学生实体类的编写以及使用 数据信息&#xff1a; 1. Student 实体类 import org.apache.hadoop.io.WritableComparable;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;public class Stude…

java八股文面试[多线程]——合适的线程数是多少

知识来源&#xff1a; 【并发与线程】 合适的线程数量是多少&#xff1f;CPU 核心数和线程数的关系&#xff1f;_哔哩哔哩_bilibili 【2023年面试】程序开多少线程合适_哔哩哔哩_bilibili

LeetCode 44题:通配符匹配

题目 给你一个输入字符串 (s) 和一个字符模式 (p) &#xff0c;请你实现一个支持 ? 和 * 匹配规则的通配符匹配&#xff1a; ? 可以匹配任何单个字符。* 可以匹配任意字符序列&#xff08;包括空字符序列&#xff09;。 判定匹配成功的充要条件是&#xff1a;字符模式必须…

Python实现自动关键词提取

随着互联网的发展&#xff0c;越来越多的人喜欢在网络上阅读小说。本文将通过详细示例&#xff0c;向您介绍如何使用Python编写爬虫程序来获取网络小说&#xff0c;并利用自然语言处理技术实现自动文摘和关键词提取功能。 1. 网络小说数据抓取 首先&#xff0c;请确保已安装必…

Kotlin协程简述与上下文和调度器(Dispatchers )

协程概述 子程序或者称为函数&#xff0c;在所有的语言中都是层级调用&#xff0c;如&#xff1a;A调用B&#xff0c;B在执行过程中又调用了C&#xff0c;C执行完毕返回&#xff0c;B执行完毕返回&#xff0c;最后是A执行完毕。所以子程序是 通过栈来实现的&#xff0c;一个线…

使用安全复制命令scp在Windows系统和Linux系统之间相互传输文件

现在已经有很多远程控制服务器的第三方软件平台&#xff0c;比如FinalShell&#xff0c;MobaXterm等&#xff0c;半可视化界面&#xff0c;使用起来非常方便和友好&#xff0c;两个系统之间传输文件直接拖就行&#xff0c;当然也可以使用命令方式在两个系统之间相互传递。 目录…

git 基础

1.下载安装Git&#xff08;略&#xff09; 2.打开git bash窗口 3.查看版本号、设置用户名和邮箱 用户名和邮箱可以随意起&#xff0c;与GitHub的账号邮箱没有关系 4.初始化git 在D盘中新建gitspace文件夹&#xff0c;并在该目录下打开git bash窗口 git init 初始化完成后会…

基于深度学习的机器视觉表计识别

01 引言 针对仪表自动读数问题&#xff0c;新型数字式仪表的读数比较方便&#xff0c;现阶段已经有非常多成熟的方案落地&#xff0c;而针对传统指针式仪表自动读数的现有方案还不够成熟&#xff0c;存在识别不精确、易受环境干扰等问题&#xff0c;是亟待研究和攻克的难题。我…

ICS PA1

ICS PA1 init.shmake 编译加速ISA计算机是个状态机程序是个状态机准备第一个客户程序parse_argsinit_randinit_loginit_meminit_isa load_img剩余的初始化工作运行第一个客户程序调试&#xff1a;零断点TUI 基础设施单步执行打印寄存器状态扫描内存 表达式求值词法分析递归求值…

Vue.js2+Cesium1.103.0 十一、Three.js 炸裂效果

Vue.js2Cesium1.103.0 十一、Three.js 炸裂效果 Demo ThreeModelBoom.vue <template><div:id"id"class"three_container"/> </template><script> /* eslint-disable eqeqeq */ /* eslint-disable no-unused-vars */ /* eslint-d…

20 MySQL(下)

文章目录 视图视图是什么定义视图查看视图删除视图视图的作用 事务事务的使用 索引查询索引创建索引删除索引聚集索引和非聚集索引影响 账户管理&#xff08;了解非DBA&#xff09;授予权限 与 账户的相关操作 MySQL的主从配置 视图 视图是什么 通俗的讲&#xff0c;视图就是…