强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Transformer-LSTM+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab完整源码和数据)
Transformer-LSTM模型的架构:输入层:多个变量作为输入,形成一个多维输入张量。Transformer编码器:该编码器由多个Transformer编码器层组成,每个编码器层包含多头注意力机制和前馈网络。编码器层用于学习变量之间的关系。LSTM层:在Transformer编码器之后,将输出序列输入到LSTM层中。LSTM层用于处理序列,记忆先前的状态,并生成隐藏状态序列。输出层:将LSTM层的隐藏状态序列输入到输出层,通过全连接层进行最终的预测。输出层的神经元个数通常与预测目标的维度相匹配。训练过程中,可以使用已知的输入序列和目标序列来计算预测误差,并使用反向传播算法来更新模型的参数。优化器可以使用常见的梯度下降方法,如Adam。
多目标优化是指在优化问题中同时考虑多个目标的优化过程。在多目标优化中,通常存在多个冲突的目标,即改善一个目标可能会导致另一个目标的恶化。因此,多目标优化的目标是找到一组解,这组解在多个目标下都是最优的,而不是仅仅优化单一目标。
2.先通过Transformer-LSTM封装因变量(y1 y2 y3 )与自变量(x1 x2 x3 x4 x5)代理模型,再通过nsga2寻找y极值(y1极大;y2 y3极小),并给出对应的x1 x2 x3 x4 x5Pareto解集。
3.data为数据集,5个输入特征,3个输出变量,NSGAII算法寻极值,求出极值时(max y1; min y2;min y3)的自变量x1,x2,x3,x4,x5。
4.main1.m为Transformer-LSTM主程序文件、main2.m为NSGAII多目标优化算法主程序文件,依次运行即可,其余为函数文件,无需运行。

在这里插入图片描述
5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。
6.适合工艺参数优化、工程设计优化等最优特征组合领域。

NSGA-II算法的基本思想与技术路线
1) 随机产生规模为N的初始种群Pt,经过非支配排序、 选择、 交叉和变异, 产生子代种群Qt, 并将两个种群联合在一起形成大小为2N的种群Rt;
2)进行快速非支配排序, 同时对每个非支配层中的个体进行拥挤度计算, 根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群Pt+1;
3) 通过遗传算法的基本操作产生新的子代种群Qt+1, 将Pt+1与Qt+1合并形成新的种群Rt, 重复以上操作, 直到满足程序结束的条件。
在这里插入图片描述
数据集

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!(Matlab)

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义结果存放模板
empty.position = [];        %输入变量存放
empty.cost = [];            %目标函数存放
empty.rank = [];            % 非支配排序等级
empty.domination = [];      %支配个体集合
empty.dominated = 0;        %支配个体数目
empty.crowdingdistance = [];%个体聚集距离
pop = repmat(empty, npop, 1);
%% 1、初始化种群
for i = 1 : npop
    pop(i).position = create_x(var);   %产生输入变量(个体)
    pop(i).cost = costfunction(pop(i).position);%计算目标函数
end
%% 2、构造非支配集
[pop,F] = nondominatedsort(pop);
%% 计算聚集距离
pop = calcrowdingdistance(pop,F);
%% 主程序(选择、交叉、变异)

参考资料

工艺参数优化、工程设计优化!GRNN神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化陪您跨年!RBF神经网络+NSGAII多目标优化算法(Matlab)
工艺参数优化、工程设计优化来袭!BP神经网络+NSGAII多目标优化算法(Matlab)

北大核心工艺参数优化!SAO-BP雪融算法优化BP神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化上新!Elman循环神经网络+NSGAII多目标优化算法(Matlab)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955894.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何通过 Apache Airflow 将数据导入 Elasticsearch

作者:来自 Elastic Andre Luiz 了解如何通过 Apache Airflow 将数据导入 Elasticsearch。 Apache Airflow Apache Airflow 是一个旨在创建、安排(schedule)和监控工作流的平台。它用于编排 ETL(Extract-Transform-Load&#xff0…

电脑风扇声音大怎么办? 原因及解决方法

电脑风扇是电脑的重要组件之一,它的作用是为电脑的各个部件提供冷却,防止电脑过热。然而,有时候我们会发现电脑风扇的声音特别大,不仅影响我们的使用体验,也可能是电脑出现了一些问题。那么,电脑风扇声音大…

Oracle报错ORA-01078、LRM-00109

虚拟机异常关机后,rac数据库备机无法启动数据库,报错如下 解决方法: 找到如下路径文件 执行: cp init.ora.016202516818 /u01/app/oracle/product/19.3.0/db/dbs/ mv init.ora.016202516818 initplm2.ora 再次进入命令行sqlpl…

.Net Core微服务入门系列(一)——项目搭建

系列文章目录 1、.Net Core微服务入门系列(一)——项目搭建 2、.Net Core微服务入门全纪录(二)——Consul-服务注册与发现(上) 3、.Net Core微服务入门全纪录(三)——Consul-服务注…

Ability Kit-程序框架服务(类似Android Activity)

文章目录 Ability Kit(程序框架服务)简介Stage模型开发概述Stage模型应用组件应用/组件级配置UIAbility组件概述概述声明配置 生命周期概述生命周期状态说明Create状态WindowStageCreate**和**WindowStageDestroy状态WindowStageWillDestroy状态Foregrou…

Harmony OS 5.0.1 模拟器报未开启 Hyper-V解决方法

程序员Feri一名12年的程序员,做过开发带过团队创过业,擅长Java、嵌入式、鸿蒙、人工智能等,专注于程序员成长那点儿事,希望在成长的路上有你相伴!君志所向,一往无前! 今天在写Harmony NEXT版本的元服务的时候,突然模拟器无法启动了&#xff0…

WPS数据分析000004

目录 一、表格阅读技巧 冻结窗格 拆分窗口 新建窗口 阅读模式 护眼模式 二、表格打印技巧 打印预览 打印缩放 打印区域 打印标题 分页打印 打印位置 页眉页脚 逐份打印 三、表格保护技巧 锁定单元格 隐藏公式 文档权限 文件加密 一、表格阅读技巧 冻结窗…

LabVIEW桥接传感器数据采集与校准程序

该程序设计用于采集来自桥接传感器的数据,执行必要的设置(如桥接配置、信号采集参数、时间与触发设置),并进行适当的标定和偏移校正,最终通过图表呈现采集到的数据信息。程序包括多个模块,用于配置通道、触…

2025西湖论剑-babytrace

前言 就做了下题目,pwn1/3 都是签到,pwn2 后面绕 ptrace 有点意思,简单记录一下 漏洞分析 子进程中的读/写功能没有检查负数的情况,存在越界读写: void __fastcall get_value(__int64 *int64_arr) {__int64 ll; //…

【统计的思想】假设检验(一)

假设检验是统计学里的重要方法,同时也是一种“在理想与现实之间观察求索”的测试活动。假设检验从概率的角度去考察理想与现实之间的关系,籍此来缓解测试可信性问题。 我们先来看一个例子。民航旅客服务系统,简称PSS系统,有一种业…

GPT-5 传言:一场正在幕后发生的 AI 变革

新的一年,让我们从一个引人入胜的话题开始:如果我告诉你,GPT-5 并非虚构,而是真实存在呢?它不仅真实存在,而且正在你看不见的地方悄然塑造着世界。我的基本假设是:OpenAI 已经秘密开发出 GPT-5&…

【20】Word:小许-质量管理-论文❗

目录 题目​ NO1.2.3.4.5 NO6.7 NO8 NO9 NO10.11 题目 NO1.2.3.4.5 另存为“Word.docx”文件在考生文件夹下,F12Fn是另存为的作用布局→页面设置对话框→纸张:大小A4→页边距:上下左右不连续ctrl选择除表格外的所有内容→开始→字体对…

Leetcode - 周赛432

目录 一、3417. 跳过交替单元格的之字形遍历二、3418. 机器人可以获得的最大金币数三、3419. 图的最大边权的最小值四、3420. 统计 K 次操作以内得到非递减子数组的数目 一、3417. 跳过交替单元格的之字形遍历 题目链接 本题是一道模拟题,第一行走0,2&…

ASP.NET Core - 配置系统之配置提供程序

ASP.NET Core - 配置系统之配置提供程序 3. 配置提供程序3.1 文件配置提供程序3.1.1 JSON配置提供程序3.1.2 XML配置提供程序3.1.3 INI配置提供程序 3.2 环境变量配置提供程序3.3 命令行配置提供程序3.4 内存配置提供程序3.5 配置加载顺序 3.6 默认配置来源 3. 配置提供程序 前…

探索与创作:2024年CSDN平台上的成长与突破

文章目录 我与CSDN的初次邂逅初学阶段的阅读CSDN:编程新手的避风港初学者的福音:细致入微的知识讲解考试复习神器:技术总结的“救命指南”曾经的自己:为何迟迟不迈出写博客的第一步兴趣萌芽:从“读”到“想写”的初体验…

CSS中样式继承+优先级

继承属性和非继承属性 一、定义及分类 1、继承属性是指在父元素上设置了这些属性后,子元素会自动继承这些属性的值,除非子元素显式地设置了不同的值。 常见的继承属性: 字体 font 系列文本text-align text-ident line-height letter-spacing颜色 col…

macOS 安装JDK17

文章目录 前言介绍新特性下载安装1.下载完成后打开downloads 双击进行安装2.配置环境变量3.测试快速切换JDK 小结 前言 近期找开源软件,发现很多都已经使用JDK17springboot3 了,之前的JDK8已经被替换下场,所以今天就在本机安装了JDK17&#…

ChatGPT大模型极简应用开发-CH1-初识 GPT-4 和 ChatGPT

文章目录 1.1 LLM 概述1.1.1 语言模型和NLP基础1.1.2 Transformer及在LLM中的作用1.1.3 解密 GPT 模型的标记化和预测步骤 1.2 GPT 模型简史:从 GPT-1 到 GPT-41.2.1 GPT11.2.2 GPT21.2.3 GPT-31.2.4 从 GPT-3 到 InstructGPT1.2.5 GPT-3.5、Codex 和 ChatGPT1.2.6 …

vector迭代器的使用以及迭代器失效

一、iterator的使用注意 begin与end 遵循左闭右开的原则,begin 指向vector的第一个元素,end 指向vector的最后一个元素的往下一个位置。 rbegin 与 rend rbegin指向最后一个元素的位置,rend指向第一个元素的往前一个位置。 二、vector的常…

【Linux】15.Linux进程概念(4)

文章目录 程序地址空间前景回顾C语言空间布局图:代码1代码2代码3代码4代码5代码6代码7 程序地址空间前景回顾 历史核心问题: pid_t id fork(); if(id 0) else if(id>0) 为什么一个id可以放两个值呢?之前没有仔细讲。 C语言空间布局图&am…