STM32 FreeRTOS内存管理简介

在使用 FreeRTOS 创建任务、队列、信号量等对象时,通常都有动态创建和静态创建的方式。动态方式提供了更灵活的内存管理,而静态方式则更注重内存的静态分配和控制。

如果是的,那么标准 C 库 malloc() 和 free() 函数有时可用于此目的,但是有以下缺点:

它们在嵌入式系统上并不总是可用。

它们占用了宝贵的代码空间。

它们不是线程安全的。

它们不是确定性的 (执行函数所需时间将因调用而异)。

所以更多的时候需要的不是一个替代的内存分配实现。一个嵌入式/实时系统的 RAM 和定时要求可能与另一个非常不同,所以单一的 RAM 分配算法将永远只适用于一个应用程序子集。为了避免此问题,FreeRTOS 将内存分配 API 保留在其可移植层,提供了五种内存管理算法: 

heap_1:最简单,不允许释放内存。

heap_2:允许释放内存,但不会合并相邻的空闲块。

heap_3:简单包装了标准 malloc() 和 free(),以保证线程安全。

heap_4:合并相邻的空闲块以避免碎片化。包含绝对地址放置选项。

heap_5:如同 heap_4,能够跨越多个不相邻内存区域的堆。

FreeRTOS内存管理算法

heap_1算法

heap_1 是最简单的实现方式。内存一经分配,它不允许内存再被释放。尽管如此,heap_1.c 还是适用于大量嵌入式应用程序。这是因为许多小型和深度嵌入的应用程序在系统启动时创建了所需的所有任务、队列、信号量等,并在程序的生命周期内使用所有这些对象(直到应用程序再次关闭或重新启动)。任何内容都不会被删除

heap_2算法

heap_2 使用最佳适应算法,并且与方案 1 不同,它允许释放先前分配的块,它将相邻的空闲块组合成一个大块。------空闲块不会合并

heap_2.c 适用于许多必须动态创建对象的小型实时系统 。

1、如果动态地创建和删除任务,且分配给正在创建任务的堆栈大小总是相同的,那么 heap2.c 可以在大多数情况下使用。

2、但是,如果分配给正在创建任务的堆栈的大小不是总相同,那么可用的空闲内存可能会被碎片化成许多小块,最终导致分配失败。

heap_2 使用最佳适应算法,该算法在空闲内存中选择与请求的内存大小最接近的块来分配内存。下面是一个简单的例子来说明最佳适应算法:

假设有一个空闲内存,其中包含以下块:

大小为 20 字节的空闲块。

大小为 15 字节的空闲块。

大小为 25 字节的空闲块。

现在有一个任务请求分配 18 字节的内存。最佳适应算法将选择大小为 20 字节的块,因为它与请求的大小最接近。在选择这个块后,分配器可能会将该块分割为两部分,一部分大小为 18 字节,用于任务的内存,另一部分大小为 2 字节,留作未分配的块。

heap_3算法

heap_3使用 C 库的 malloc 和 free 函数来进行内存分配和释放。它通过分配固定大小的来管理内存,这些块的大小在配置 FreeRTOS 时进行定义,不会动态改变

假设我们使用 Heap_3 管理内存,其中块的大小固定为 32 字节。初始时,整个内存被分割成大小为 32 字节的块:

块 1(32 字节)。

块 2(32 字节)。

块 3(32 字节)。

现在,有一个任务请求分配 20 字节的内存。Heap_3 算法将选择块 1,并将其分割成两部分:

分配给任务的内存块(20 字节)。

剩余未分配的块(12 字节)。

再假设另一个任务请求分配 40 字节的内存。由于没有足够大的块可供分配,heap_3 将返回分配失败的状态。

heap_3 的特点是块大小固定,这样可以简化内存管理。然而,也因为块大小不可变,可能导致内存碎片问题,即一些块可能无法完全被利用,从而浪费了一些内存。

heap_4算法

heap_4使用第一适应算法,并且会将相邻的空闲内存块合并成大内存块,减少内存碎片。

第一适应算法会在可用内存块中选择第一个足够大的内存块进行分配。

假设有一个内存块链表,其中包含以下顺序的内存块:

大小为 40 字节的块。

大小为 30 字节的块。

大小为 15 字节的块。

大小为 20 字节的块。

如果一个任务需要申请 25 字节的内存,第一适应算法将选择大小为 40 字节的块,因为它是第一个足够大以容纳任务需求的内存块。(如果是heap_2的最佳适应算法,会选择30字节的块)

heap_5算法

heap_5使用与 heap_4 相同的第一适应和内存合并算法,允许堆跨越多个不相邻(非连续)内存区域。适用于内存地址不连续的复杂场景。

reeRTOS内存管理相关API函数介绍

内存管理相关函数如下:

函数

描述

void * pvPortMalloc( size_t  xWantedSize );

申请内存

void  vPortFree( void * pv );

释放内存

size_t  xPortGetFreeHeapSize( void );

获取当前空闲内存的大小

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955818.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

构建core模块

文章目录 1.环境搭建1.sunrays-common下新建core模块2.引入依赖,并设置打包常规配置 2.测试使用1.启动!1.创建模块2.引入依赖3.application.yml 配置MySQL和Minio4.创建启动类5.启动测试 2.common-web-starter1.目录2.WebController.java3.结果 3.common…

【Flink系列】6. Flink中的时间和窗口

6. Flink中的时间和窗口 在批处理统计中,我们可以等待一批数据都到齐后,统一处理。但是在实时处理统计中,我们是来一条就得处理一条,那么我们怎么统计最近一段时间内的数据呢?引入“窗口”。 所谓的“窗口”&#xff…

AIGC与劳动力市场:技术进步与就业结构的重塑

随着人工智能(AI)技术的迅猛发展,尤其是生成式AI(AIGC),劳动力市场正经历前所未有的变革。从内容创作到自动化生产线,几乎每个行业都在经历一场技术的洗礼。然而,这场革命并不是全然…

废品回收小程序,数字化回收时代

随着科技的不断创新发展,废品回收在各种技术的支持下也在不断地创新,提高了市场的发展速度,不仅能够让回收效率更加高效,还能够让居民更加便捷地进行回收,推动废品回收行业的发展。 回收市场机遇 目前,废…

题解 CodeForces 430B Balls Game 栈 C/C++

题目传送门: Problem - B - Codeforceshttps://mirror.codeforces.com/contest/430/problem/B翻译: Iahub正在为国际信息学奥林匹克竞赛(IOI)做准备。有什么比玩一个类似祖玛的游戏更好的训练方法呢? 一排中有n个球…

【Linux】线程全解:概念、操作、互斥与同步机制、线程池实现

🎬 个人主页:谁在夜里看海. 📖 个人专栏:《C系列》《Linux系列》《算法系列》 ⛰️ 道阻且长,行则将至 目录 📚一、线程概念 📖 回顾进程 📖 引入线程 📖 总结 &a…

PDF文件提取开源工具调研总结

概述 PDF是一种日常工作中广泛使用的跨平台文档格式,常常包含丰富的内容:包括文本、图表、表格、公式、图像。在现代信息处理工作流中发挥了重要的作用,尤其是RAG项目中,通过将非结构化数据转化为结构化和可访问的信息&#xff0…

简历_使用优化的Redis自增ID策略生成分布式环境下全局唯一ID,用于用户上传数据的命名以及多种ID的生成

系列博客目录 文章目录 系列博客目录WhyRedis自增ID策略 Why 我们需要设置全局唯一ID。原因:当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题。 问题:id的规律性太明显、…

跨境电商使用云手机用来做什么呢?

随着跨境电商的发展,越来越多的卖家开始尝试使用云手机来协助他们的业务,这是因为云手机具有许多优势。那么,具体来说,跨境电商使用云手机可以做哪些事情呢? (一)实现多账号登录和管理 跨境电商…

计算机网络 (47)应用进程跨越网络的通信

前言 计算机网络应用进程跨越网络的通信是一个复杂而关键的过程,它涉及多个层面和组件的协同工作。 一、通信概述 计算机网络中的通信,本质上是不同主机中的应用进程之间的数据交换。为了实现这种通信,需要借助网络协议栈中的各层协议&#x…

Open3D 计算每个点的协方差矩阵【2025最新版】

目录 一、算法原理1、计算公式2、主要函数3、函数源码二、代码实现三、结果展示博客长期更新,本文最近更新时间为:2025年1月18日。 一、算法原理 1、计算公式 对于点云数据中的任意一点 p p p,根据其邻域内点的坐标计算其协方差矩阵。计算公式如下:

e2studio开发RA0E1(16)----配置RTC时钟及显示时间

e2studio开发RA0E1.16--配置RTC时钟及显示时间 概述视频教学样品申请完整代码下载硬件准备参考程序新建工程工程模板保存工程路径芯片配置工程模板选择时钟设置UART配置UART属性配置设置e2studio堆栈e2studio的重定向printf设置R_UARTA_Open()函数原型回调函数user_uart_callba…

Go语言strings包与字符串操作:从基础到高级的全面解析

Go语言strings包与字符串操作:从基础到高级的全面解析 引言 Go语言以其简洁、高效和强大的标准库而闻名,其中strings包是处理字符串操作的核心工具。本文将深入探讨Go语言中strings包的功能及其在实际开发中的应用,帮助开发者更好地理解和使用这一工具。 1. strings包概述…

微服务学习-快速搭建

1. 速通版 1.1. git clone 拉取项目代码,导入 idea 中 git clone icoolkj-microservices-code: 致力于搭建微服务架构平台 1.2. git checkout v1.0.1版本 链接地址:icoolkj-microservices-code 标签 - Gitee.com 2. 项目服务结构 3. 实现重点步骤 …

加密货币的基本交易技术指标

是币安交易市场的基本版视图,trading View是有更复杂的参数追踪。币安的交易的技术指标有主图和副图。有很多指标,让ai解释一下相关概念和意义。加密货币交易中可能遇到的主图指标及其含义: 1. MA(移动平均线,Moving Average&…

简单介绍JSONStream的使用

地址 作用 这个模块是根据需要筛选出json数据中自己所需要的数据 使用 var JSONStream require("JSONStream"); var parse require("fast-json-parse"); var fs require("fs");fs.createReadStream("./time.json").pipe(JSONSt…

UOS扩容攻略:迁移home

原文链接:UOS扩容攻略:迁移/home Hello,大家好啊!今天给大家带来一篇关于 UOS 扩容攻略:迁移 /home 目录 的文章。相信很多朋友在使用 UOS 系统时,会遇到系统分区空间不足,尤其是 /home 目录存…

RK3588平台开发系列讲解(NPU篇)NPU 驱动的组成

文章目录 一、NPU 驱动组成二、查询 NPU 驱动版本三、查询 rknn_server 版本四、查询 librknn_runtime 版本沉淀、分享、成长,让自己和他人都能有所收获!😄 一、NPU 驱动组成 NPU 驱动版本、rknn_server 版本、librknn_runtime 版本以及 RKNN Toolkit 版本的对应关系尤为重…

【实践】操作系统智能助手OS Copilot新功能测评

一、引言 数字化加速发展,尤其人工智能的发展速度越来越快。操作系统智能助手成为提升用户体验与操作效率的关键因素。OS Copilot借助语言模型,人工智能等,对操作系统的自然语言交互操作 推出很多功能,值得开发,尤其运…

C# OpenCvSharp 部署3D人脸重建3DDFA-V3

目录 说明 效果 模型信息 landmark.onnx net_recon.onnx net_recon_mbnet.onnx retinaface_resnet50.onnx 项目 代码 下载 参考 C# OpenCvSharp 部署3D人脸重建3DDFA-V3 说明 地址:https://github.com/wang-zidu/3DDFA-V3 3DDFA_V3 uses the geometri…