【 PID 算法 】PID 算法基础

一、简介

PID即:Proportional(比例)、Integral(积分)、Differential(微分)的缩写。也就是说,PID算法是结合这三种环节在一起的。粘一下百度百科中的东西吧。

顾名思义,PID控制算法是结合比例、积分和微分三种环节于一体的控制算法,它是连续系统中技术最为成熟、应用最为广泛的一种控制算法,该控制算法出现于20世纪30至40年代,适用于对被控对象模型了解不清楚的场合。实际运行的经验和理论的分析都表明,运用这种控制规律对许多工业过程进行控制时,都能得到比较满意的效果。PID控制的实质就是根据输入的偏差值,按照比例、积分、微分的函数关系进行运算,运算结果用以控制输出

二、闭环控制

这里有一个闭环控制与开环控制的概念,先说一下最简单的开环控制,就是不控制(好简单,哈哈哈)。

1. 开环控制

开环控制,就是控制回路不形成环,也就是,输出没有影响到输入的情况,输入只管输入,不依赖于输出。

这种情况下,可能系统由于外界干扰的等情况,导致输出并不是我们预期的输出,而是有一些偏差,这就不太好了。

在这里插入图片描述
粘一个知乎博主的图吧,就是如果想走到目标位置,由于外界影响走到了实际位置,但是因为是开环控制,输出并不会在行进过程中影响输入,也就是人并不会自动的根据输出来调整走的方向。这样就不太好。

2. 闭环控制

所谓闭环控制,就是输出影响输入,闭环控制是将输出量直接或间接反馈到输入端形成闭环、参与控制的控制方式。这样的话,当输出出现偏差的时候,就可以根据偏差来影响输入,进而调整下次输出的偏差。从而保持一种稳定情况。
在这里插入图片描述
如上图所示,假定在时刻T有:
输入【input(t)】、输出【output(t)】、误差【err(t) = input(t) - output(t)】、PID输出【u(t)】

系统真正的执行是执行的PID的输出值。系统的输出值,回到输入的地方,与当前时刻的输入进行误差计算,进而影响系统的执行过程。像这种输出影响输入的,就属于闭环控制。

如果上面开环控制部分:如果人的眼睛可以看到系统的执行输出,就可以影响人所进行的前进决策,从而调整系统的误差。这感觉就像形成了一个闭环控制。

三、PID算法的控制架构

在这里插入图片描述
如上图所示,就是PID算法的控制架构,它主要分为三个部分,并且这三个部分都是简单的相加就决定了u(t)。算是很简单的控制算法了。

接下来依次说一下:比例控制算法,积分控制算法,微分控制算法。

四、比例控制算法(P)

比例控制算法,我感觉应该是PID算法中比较核心的部分,感觉他是整个PID中的主力,至于其他的像积分控制算法,和微分控制算法,是为了消除误差,减少震荡。

如果在某一个环境中,如将水倒入水缸中,假设水缸的目的水位为1m,即r(t)为一个常量D=1m,

  1. 此时水缸为空,则当前的目的水位为0m,故此时误差e(t)为1m。此时的PID系统只有比例控制算法,故,u(t)=Kp * e(t),假设Kp为0.1,故此时u(t)为0.1m,将0.1m的水倒进水缸中去。
  2. 水缸中有了0.1m的水,此时的误差就为0.9m,故此时需要加入0.09m的水,可以想象,这里就是一个累加的过程,最终终将会将水缸倒满。

在理想状态下,其实有比例控制算法就完全可以满足要求,但是,如果水缸漏水怎么办,如每当你放入0.05m的水,水缸就漏0.05m的水,这就导致最后水缸是永远填不满的,并且水缸水位保持固定,这就导致了这个误差会是一个稳定值,称为稳态误差,也就是这个误差通过PID算法计算出来的u(t)完全没有起到作用。

( 在实际情况中,这种类似水缸漏水的情况往往更加常见,比如控制汽车运动,摩擦阻力就相当于是“漏水”,控制机械臂、无人机的飞行,各类阻力和消耗都可以理解为本例中的“漏水”)

五、积分控制算法(I)

积分控制算法,就是为了消除稳态误差,由于积分是从0时刻一直积分到当前时刻 t,并且是对e(t)函数进行积分。

  1. 在到达节点位置之前,e(t)始终是正的,也就是它的积分始终是大于0的,如果系统存在稳态误差的话,由于误差一直不变,但是积分变呀,积分会一直积下去,之前的稳态误差是中和了比例控制算法的值,现在有一个一直增长的积分,导致每次u(t)的输出也在一直的增大,从而稳态误差就被消除了。到最后,误差为零了,而此时的e(t)也为0了,积分也就固定在某一个值了。从而每次的稳态误差就都可以被消除掉。
  2. 如果到达节点位置之后了,也就是冲过了节点的指定位置,这时候误差就变为了负的,然后由于积分正负可以相减,同样可以很好的适应这种情况。

六、微分控制算法(D)

用了积分控制算法,现在可以消除稳定误差了,但是考虑下面几种情况:

  1. 现在的情况是不存在稳态误差,但是存在积分控制算法,那么问题就出现了,当到达了目的位置后,哪怕误差已经是0了,但是积分控制算法那里还是一个整数,导致下一次输出u(t)仍然为一个整数,而不是0,这样的话,就会越过目的位置,虽然之后误差就变成了负数,又会回落回目的位置,但是这样始终是震荡的,而不是一直稳定下去。
  2. 在初始状态下,如果Kp或者Ki设置的过大,则会导致u(t)的变化幅度过大。

综上,在上述情况下,加入微分控制就很有必要,其实微分控制的作用就是防止幅度过大,导致震荡或者超调,微分就是为了在输出斜率变的太大之前,在系统中引入一个有效的早期修正信号。微分可以防止震荡。

当存在稳态误差的时候,由于微分对于常数的求导是0,故微分不能解决稳态误差的问题。单独使用意义不大,故需要与比例积分共同配合使用,构成PD或PID控制。

七、PID算法公式

PID算法公式如下图所示,Kp作用于所有的项,然后给积分部分再额外配一个系数,给微分项再额外配一个系数。
在这里插入图片描述

Kp —— 比例增益,Kp与比例度成倒数关系;
Tt —— 积分时间常数;
TD —— 微分时间常数;
u(t) —— PID控制器的输出信号;
e(t) —— 给定值 r (t) 与测量值之差。

这样再一看这个PID算法是不是就一目了然了呢。

接下来说一下公式推导。

1. 位置式

由于PID算法原型是连续函数,这样的一个操作在计算机中怕是不太行,所以需要将其离散化。从时刻0开始每隔 △t 时间间隔进行数据采样,则会形成下列一系列时间节点

(e0,e1,e2,e3 … ek)

相应的有

(u0,u1,u2,u3 … uk)

则有积分为离散化累加,微分为与上一时刻节点的连线斜率:
在这里插入图片描述

不过不影响理解,可以看到对于积分部分和微分部分,把 △t 都写成了T,然后把Kp都乘了进去 。然后对于以上的式子,给他们配一个统一的系数,即称积分部分为Ki,微分部分为Kd,则有如下式子:

在这里插入图片描述
这样的话,就清晰很多了,并且离散化的数值有利于计算机实现。

2. 增量式

这时设 △u(k) = u(k) - u(k-1) ,最终得到的增量式PID的离散公式如下:
在这里插入图片描述

八、结语

关于PID算法应该是超级简单的,下面我贴一个视频演示,以及两个我主要参考的博客吧。
在这里插入图片描述

PID控制算法原理(抛弃公式,从本质上真正理解PID控制)
简易PID算法的快速扫盲(超详细+过程推导+C语言程序)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/954181.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 WPF 和 C# 绘制覆盖网格的 3D 表面

此示例展示了如何使用 C# 代码和 XAML 绘制覆盖有网格的 3D 表面。示例使用 WPF 和 C# 将纹理应用于三角形展示了如何将纹理应用于三角形。此示例只是使用该技术将包含大网格的位图应用于表面。 在类级别,程序使用以下代码来定义将点的 X 和 Z 坐标映射到 0.0 - 1.…

为深度学习创建PyTorch张量 - 最佳选项

为深度学习创建PyTorch张量 - 最佳选项 正如我们所看到的,PyTorch张量是torch.Tensor​ PyTorch类的实例。张量的抽象概念与PyTorch张量之间的区别在于,PyTorch张量为我们提供了一个可以在代码中操作的具体实现。 在上一篇文章中,我们看到了…

Linux下源码编译安装Nginx1.24及服务脚本实战

1、下载Nginx [rootlocalhost ~]# wget -c https://nginx.org/download/nginx-1.24.0.tar.gz2、解压 [rootlocalhost ~]# tar xf nginx-1.24.0.tar.gz -C /usr/local/src/3、安装依赖 [rootlocalhost ~]# yum install gcc gcc-c make pcre-devel openssl-devel -y4、 准备 N…

4、dockerfile实现lnmp和elk

dockerfile实现lnmp 使用dockerfile n:nginx,172.111.0.10 m:mysql,172.111.0.20 p:php,172.111.0.30 安装配置nginx 1、准备好nginx和wordpress安装包 2、配置dockerfile 3、配置nginx主配置文件ngin…

一文通透OpenVLA及其源码剖析——基于Prismatic VLM(SigLIP、DinoV2、Llama 2)及离散化动作预测

前言 当对机器人动作策略的预测越来越成熟稳定之后(比如ACT、比如扩散策略diffusion policy),为了让机器人可以拥有更好的泛化能力,比较典型的途径之一便是基于预训练过的大语言模型中的广泛知识,然后加一个policy head(当然,一开…

《操作系统真象还原》第十三章——磁盘驱动程序

文件系统磁盘创建 创建磁盘 进入bochs安装目录,输入以下命令 ./bin/bximage 然后按照以下步骤创建硬盘 修改硬盘配置 vim boot.disk 添加以下代码行 ata0-slave: typedisk, path"hd80M.img", modeflat,cylinders162,heads16,spt63 完整配置如下 …

快速、可靠且高性价比的定制IP模式提升芯片设计公司竞争力

作者:Karthik Gopal,SmartDV Technologies亚洲区总经理 智权半导体科技(厦门)有限公司总经理 无论是在出货量巨大的消费电子市场,还是针对特定应用的细分芯片市场,差异化芯片设计带来的定制化需求也在芯片…

v-bind操作class

v-bind操作class 参考文献: Vue的快速上手 Vue指令上 Vue指令下 Vue指令的综合案例 指令的修饰符 文章目录 v-bind操作classv-bind对于样式控制的增强操作class案例(tab导航高亮)操作style操作style案例 结语 博客主页: He guolin-CSDN博客 关注我一起学习&#…

Kubernetes1.28 编译 kubeadm修改证书有效期到 100年.并更新k8s集群证书

文章目录 前言一、资源准备1. 下载对应源码2.安装编译工具3.安装并设置golang 二、修改证书有效期1.修改证书有效期2.修改 CA 证书有效期 三、编译kubeadm四、使用新kubeadm方式1.当部署新集群时,使用该kubeadm进行初始化2.替换现有集群kubeadm操作 前言 kubeadm 默认证书为一…

HarmonyOS NEXT应用开发边学边玩系列:从零实现一影视APP (三、影视搜索页功能实现)

在HarmonyOS NEXT开发环境中,我们可以使用nutpi/axios库来简化网络请求的操作。本文将展示如何使用HarmonyOS NEXT框架和nutpi/axios库,从零开始实现一个简单的影视APP,主要关注影视搜索页的功能实现。 为什么选择nutpi/axios? n…

高级运维:shell练习2

1、需求:判断192.168.1.0/24网络中,当前在线的ip有哪些,并编写脚本打印出来。 vim check.sh #!/bin/bash# 定义网络前缀 network_prefix"192.168.1"# 循环遍历1-254的IP for i in {1..254}; do# 构造完整的IP地址ip"$network_…

好用的php商城源码有哪些?

选择一个优秀的商城工具,能更好地帮助大家建立一个好用的商城系统。目前比较流行的都是开源PHP商城系统,那么现实中都有哪些好用的PHP商城源码值得推荐呢?下面就带大家一起来了解一下。 1.TigShop 【推荐指数】:★★★★★☆ 【推…

Docker Desktop 构建java8基础镜像jdk安装配置失效解决

Docker Desktop 构建java8基础镜像jdk安装配置失效解决 文章目录 1.问题2.解决方法3.总结 1.问题 之前的好几篇文章中分享了在Linux(centOs上)和windows10上使用docker和docker Desktop环境构建java8的最小jre基础镜像,前几天我使用Docker Desktop环境重新构建了一个…

Open FPV VTX开源之嵌入式OSD配置

Open FPV VTX开源之嵌入式OSD配置 1. 源由2. 安装3. 配置步骤一:备份/etc/telemetry.conf步骤二:修改/etc/telemetry.conf步骤三:配置时区步骤四:重启摄像头 4. 实测5. 参考资料 1. 源由 穿越机模拟图传延迟通常在10ms左右。 最…

数据平台浅理解

定义 数据平台架构是指用于收集、存储、处理和分析数据的一系列组件、技术和流程的整体架构设计。它就像是一个复杂的数据生态系统的蓝图,旨在高效地管理数据从产生源头到产生价值的整个生命周期。 主要层次 数据源层 这是数据的起点,包含各种类型的数据…

CSS3的aria-hidden学习

前言 aria-hidden 属性可用于隐藏非交互内容,使其在无障碍 API 中不可见。即当aria-hidden"true" 添加到一个元素会将该元素及其所有子元素从无障碍树中移除,这可以通过隐藏来改善辅助技术用户的体验: 纯装饰性内容,如…

【ArcGIS初学】产生随机点计算混淆矩阵

混淆矩阵:用于比较分类结果和地表真实信息 总体精度(overall accuracy) :指对角线上所有样本的像元数(正确分类的像元数)除以所有像元数。 生产者精度(producers accuracy) :某类中正确分类的像元数除以参考数据中该类的像元数(列方向),又称…

认识机器学习中的结构风险最小化准则

上一篇文章我们学习了关于经验风险最小化准则,其核心思想是通过最小化训练数据上的损失函数来优化模型参数,从而提高模型在训练集上的表现。但是这也会导致一个问题,经验风险最小化原则很容易导致模型在训练集上错误率很低,但在未…

设计模式-工厂模式/抽象工厂模式

工厂模式 定义 定义一个创建对象的接口,让子类决定实列化哪一个类,工厂模式使一个类的实例化延迟到其子类; 工厂方法模式是简单工厂模式的延伸。在工厂方法模式中,核心工厂类不在负责产品的创建,而是将具体的创建工作…

Chatper 4: Implementing a GPT model from Scratch To Generate Text

文章目录 4 Implementing a GPT model from Scratch To Generate Text4.1 Coding an LLM architecture4.2 Normalizing activations with layer normalization4.3 Implementing a feed forward network with GELU activations4.4 Adding shortcut connections4.5 Connecting at…