ros2笔记-6.2 使用urdf创建机器人模型

本节主要跟着小鱼老师的视频操作,不同的仿真平台有不同的建模语言,但是几乎都支持URDF。

本节使用URDF创建一个机器人模型。

6.2.1 帮机器人创建一个身体

URDF使用XML来描述机器人的结构和传感器、执行器等信息。

在chapt6/chap6_ws/src创建功能包:ros2 pkg create fishbot_description --build-type ament_cmake  --lience Apache-2.0

新功能包下创建urdf文件夹,新建文件:fisrt_robot.urdf. 代码如下:

<?xml version="1.0"?>
<robot name="first_robot">
    <!-- 机器人身体部分 -->
    <link name="base_link">
        <!-- 部件外观描述 -->
        <visual>
            <!-- 沿自己几何中心的偏移与旋转量 -->
            <origin xyz="0 0 0" rpy="0 0 0" />
            <!-- 几何形状 -->
            <geometry>
                <!-- 圆柱体,半径0.1m,高度 0.12m -->
                <cylinder length="0.12" radius="0.10" />
            </geometry>
            <!-- 材质子标签-蓝色 -->
            <material name="blue">
                <color rgba="0.1 0.1 1.0 0.5" />
            </material>
        </visual>
    </link>

    <!-- 机器人IMU部件 -->
    <link name="imu_link">
        <visual>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <geometry>
                <box size="0.02 0.02 0.02" />
            </geometry>
        </visual>
        <material name="black">
            <color rgba="0 0 0 0.5" />
        </material>
    </link>

    <!-- 机器人关节 -->
    <joint name="imu_joint" type="fixed">
        <!-- 父部件 -->
        <parent link="base_link" />
        <!-- 子部件 -->
        <child link="imu_link" />
        <!-- 子部件相对父部件的平移和旋转 -->
        <origin xyz="0 0 0.03" rpy="0 0 0" />
    </joint>

</robot>

urdf_to_graphviz 转成pdf也不直观。

6.2.2  在RViz中显示机器人

之间终端输入rviz2,Display模块添加RobotModel,打开刚才的urdf文件,还好会提示TF错误。

安装依赖:

sudo apt install ros-$ROS_DISTRO-rotbot-state-publisher

sudo apt install ros-$ROS_DISTRO-joint-state-publisher

为了方便运行,使用launch启动节点。添加luanch文件夹,新建display_robot.launch.py.代码如下

import launch
import launch_ros
from ament_index_python.packages import get_package_share_directory


def generate_launch_description():
    # 获取默认路径
    urdf_tutorial_path = get_package_share_directory('fishbot_description')
    default_model_path = urdf_tutorial_path + '/urdf/first_robot.urdf'
    default_rviz_config_path = urdf_tutorial_path + '/config/display_model.rviz'
    # 为 Launch 声明参数
    action_declare_arg_mode_path = launch.actions.DeclareLaunchArgument(
        name='model', default_value=str(default_model_path),
        description='URDF 的绝对路径')
    # 获取文件内容生成新的参数
    robot_description = launch_ros.parameter_descriptions.ParameterValue(
        launch.substitutions.Command(
            ['cat ', launch.substitutions.LaunchConfiguration('model')]),
        value_type=str)
    # 状态发布节点
    robot_state_publisher_node = launch_ros.actions.Node(
        package='robot_state_publisher',
        executable='robot_state_publisher',
        parameters=[{'robot_description': robot_description}]
    )
    # 关节状态发布节点
    joint_state_publisher_node = launch_ros.actions.Node(
        package='joint_state_publisher',
        executable='joint_state_publisher',
    )
    # RViz 节点
    rviz_node = launch_ros.actions.Node(
        package='rviz2',
        executable='rviz2',
        arguments=['-d', default_rviz_config_path]
    )
    return launch.LaunchDescription([
        action_declare_arg_mode_path,
        joint_state_publisher_node,
        robot_state_publisher_node,
        rviz_node
    ])

视频上小鱼老师是先把default_rviz_config_path 注释掉。对于rviz参数也去掉。修改CMakeLists.txt,增加节点urdf、launch,构建,启动后:

再次在 Rviz的Display模块做设置,步骤参考视频或者书上。添加完效果如下:

把配置.rviz保存下来,再次修改launch启动文件,加上保存的文件,参见上面代码,就可达到上面的效果。

6.2.3 使用xacro 简化URDF

安装依赖:sudo apt install ros-$ROS_DISTRO-xacro

新建文件:fist_robot.xacro

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="first_robot">   
 <!-- base -->
    <xacro:macro name="base_link" params="length radius">
        <link name="base_link">
            <visual>
                <origin xyz="0 0 0" rpy="0 0 0" />
                <geometry>
                    <cylinder length="${length}" radius="${radius}" />
                </geometry>              
                <material name="blue">
                    <color rgba="0.1 0.1 1.0 0.5" />
                </material>
            </visual>
        </link>
    </xacro:macro>
    <xacro:macro name="imu_link" params="imu_name xyz">
        <link name="${imu_name}_link">
            <visual>
                <origin xyz="0 0 0" rpy="0 0 0" />
                <geometry>
                    <box size="0.02 0.02 0.02" />
                </geometry>
            </visual>
            <material name="black">
                <color rgba="0 0 0 0.5" />
            </material>
        </link>
    
        <joint name="${imu_name}_joint" type="fixed">
            <!-- 父部件 -->
            <parent link="base_link" />
            <!-- 子部件 -->
            <child link="${imu_name}_link" />
            <!-- 子部件相对父部件的平移和旋转 -->
            <origin xyz="${xyz}" rpy="0 0 0" />
        </joint>
    </xacro:macro>    
    <xacro:base_link length="0.12" radius="0.1"/>
    <xacro:imu_link imu_name="imu_up" xyz="0 0 0.03"/>
    <xacro:imu_link imu_name="imu_down" xyz="0 0 -0.03"/>

</robot>

修改上一节6.2.2的代码把display_robot.launch.py里面。cat 替换为xacro.

构建,运行:bohu@bohu-TM1701:~/chapt6/chapt6_ws$ ros2 launch fishbot_description display_robot.launch.py model:=/home/bohu/chapt6/chapt6_ws/src/fishbot_description/urdf/first_robot.xacro

6.2.4 创建机器人部件及添加物理属性

这块代码比较长,就不一一贴出来,对比书上6.2.4,6.2.5,6.3章节。

小鱼老师讲解的过程是先添加主体,再加传感器、执行器:轮子、6.3又加了质量与惯性。

代码结构如下:

构建后,运行:ros2 launch fishbot_description display_robot.launch.py model:=/home/bohu/chapt6/chapt6_ws/install/fishbot_description/share/fishbot_description/urdf/fishbot/fish_robot.xacro

视觉效果如下:

只看质量:

只看惯性:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/954035.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

文章复现—面向配电网韧性提升的移动储能预布局与动态调度策略

目录 一、主要内容&#xff1a; 二、实际运行效果&#xff1a; 三、文章介绍&#xff1a; 四、完整代码数据下载&#xff1a; 一、主要内容&#xff1a; &#xff08;matlab代码&#xff09;该程序复现《面向配电网韧性提升的移动储能预布局与动态调度策略》&#xff0c;具…

【ASP.NET学习】Web Forms创建Web应用

文章目录 什么是 Web Forms&#xff1f;ASP.NET Web Forms - HTML 页面用 ASP.NET 编写的 Hello RUNOOB.COM它是如何工作的&#xff1f;经典 ASP ASP.NET Web Forms - 服务器控件经典 ASP 的局限性ASP.NET - 服务器控件ASP.NET - HTML 服务器控件ASP.NET - Web 服务器控件ASP.N…

python-leetcode-旋转图像

48. 旋转图像 - 力扣&#xff08;LeetCode&#xff09; class Solution:def rotate(self, matrix: List[List[int]]) -> None:"""Do not return anything, modify matrix in-place instead."""n len(matrix)# 矩阵转置for i in range(n):for…

GPT 系列论文精读:从 GPT-1 到 GPT-4

学习 & 参考资料 前置文章 Transformer 论文精读 机器学习 —— 李宏毅老师的 B 站搬运视频 自监督式学习(四) - GPT的野望[DLHLP 2020] 來自猎人暗黑大陆的模型 GPT-3 论文逐段精读 —— 沐神的论文精读合集 GPT&#xff0c;GPT-2&#xff0c;GPT-3 论文精读【论文精读】…

《计算机网络》课后探研题书面报告_了解PPPoE协议

PPPoE协议的工作原理与应用分析 摘 要 PPPoE&#xff08;Point-to-Point Protocol over Ethernet&#xff09;是一种广泛应用于宽带接入的网络协议&#xff0c;特别是在DSL&#xff08;数字用户线路&#xff09;和光纤网络中具有重要的应用价值。PPPoE结合了PPP协议的认证、加…

玩转大语言模型——langchain调用ollama视觉多模态语言模型

系列文章目录 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 langchain调用ollama视觉多模态语言模型 系列文章目录前言使用Ollama下载模型查找模型下载模型 测试模型ollama测试langchain测试加载图片加载模型…

开始使用Panuon开源界面库环境配置并手写VS2019高仿界面

1. Panuon环境配置 1.1. 通过Nuget 安装 Panuon.WPF.UI1.2. xaml引用命名空间1.3. using Panuon.WPF.UI; 2. VS2019 view 2.1. 设置窗体尺寸和title2.2. 添加静态资源 2.2.1. 什么是静态资源 2.3. 主Grid 2.3.1. 盒子模型2.3.2. 嵌套布局 3. 总结 1. Panuon环境配置 1.1. 通…

[Git] 深入理解 Git 的客户端与服务器角色

Git 的一个核心设计理念是 分布式&#xff0c;每个 Git 仓库都可以既是 客户端&#xff0c;也可以是 服务器。为了更好地理解这一特性&#xff0c;我们通过一个实际的 GitHub 远程仓库和本地仓库的场景来详细说明 Git 如何在客户端和服务器之间协作&#xff0c;如何独立地进行版…

基于考研概率论知识解读 Transformer:为何自注意力机制要除以根号 dk

Transformer自注意力机制中除以 d k \sqrt{d_k} dk​ ​深度剖析 【 Transformer 系列&#xff0c;故事从 d k \sqrt{d_k} dk​ ​说起】 LLM这么火&#xff0c;Transformer厥功甚伟&#xff0c;某天心血来潮~&#xff0c;再去看看&#xff01; 它长这个样子&#xff1a; 深入…

使用 selenium-webdriver 开发 Web 自动 UI 测试程序

优缺点 优点 有时候有可能一个改动导致其他的地方的功能失去效果&#xff0c;这样使用 Web 自动 UI 测试程序可以快速的检查并定位问题&#xff0c;节省大量的人工验证时间 缺点 增加了维护成本&#xff0c;如果功能更新过快或者技术更新过快&#xff0c;维护成本也会随之提高…

【Redis】初识分布式系统

目录 单机架构 分布式系统 应用数据分离架构 应用服务集群架构 读写分离/主从分离架构 冷热分离架构 垂直分库 微服务架构 分布式名词概念 本篇博文&#xff0c;将根据分布式系统的演进一步一步介绍每一种架构的形式&#xff0c;最后为大家总结了一些分布式中常用的…

微服务之松耦合

参考&#xff1a;https://microservices.io/post/architecture/2023/03/28/microservice-architecture-essentials-loose-coupling.html There’s actually two different types of coupling: runtime coupling - influences availability design-time coupling - influences…

pytest+request+yaml+allure搭建低编码调试门槛的接口自动化框架

接口自动化非常简单&#xff0c;大致分为以下几步&#xff1a; 准备入参调用接口拿到2中response&#xff0c;继续组装入参&#xff0c;调用下一个接口重复步骤3校验结果是否符合预期 一个优秀接口自动化框架的特点&#xff1a; 【编码门槛低】&#xff0c;又【能让新手学到…

基于Springboot + vue实现的文档管理系统

&#x1f942;(❁◡❁)您的点赞&#x1f44d;➕评论&#x1f4dd;➕收藏⭐是作者创作的最大动力&#x1f91e; &#x1f496;&#x1f4d5;&#x1f389;&#x1f525; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;欢迎留言讨论 &#x1f525;&#x1f525;&…

Pycharm连接远程解释器

这里写目录标题 0 前言1 给项目添加解释器2 通过SSH连接3 找到远程服务器的torch环境所对应的python路径&#xff0c;并设置同步映射&#xff08;1&#xff09;配置服务器的系统环境&#xff08;2&#xff09;配置服务器的conda环境 4 进入到程序入口&#xff08;main.py&#…

初学stm32 --- II2C_AT24C02,向EEPROM中读写数据

目录 IIC总线协议介绍 IIC总线结构图 IIC协议时序 1. ACK&#xff08;Acknowledge&#xff09; 2. NACK&#xff08;Not Acknowledge&#xff09; IO口模拟II2C协议 发送起始信号&#xff1a; 发送停止信号&#xff1a; 检测应答信号&#xff1a; 发送应答信号&#x…

Excel 技巧07 - 如何计算到两个日期之间的工作日数?(★)如何排除节假日计算两个日期之间的工作日数?

本文讲了如何在Excel中计算两个日期之间的工作日数&#xff0c;以及如何排除节假日计算两个日期之间的工作日数。 1&#xff0c;如何计算到两个日期之间的工作日数&#xff1f; 其实就是利用 NETWORKDAYS.INTL 函数 - weekend: 1 - 星期六&#xff0c;星期日 2&#xff0c;如…

保姆级图文详解:Linux和Docker常用终端命令

文章目录 前言1、Docker 常用命令1.1、镜像管理1.2、容器管理1.3、网络管理1.4、数据卷管理1.5、监控和性能管理 2、Linux 常用命令分类2.1、文件和目录管理2.2、用户管理2.3、系统监控和性能2.4、软件包管理2.5、网络管理 前言 亲爱的家人们&#xff0c;技术图文创作很不容易…

从玩具到工业控制--51单片机的跨界传奇【2】

咱们在上一篇博客里面讲解了什么是单片机《单片机入门》&#xff0c;让大家对单片机有了初步的了解。我们今天继续讲解一些有关单片机的知识&#xff0c;顺便也讲解一下我们单片机用到的C语言知识。如果你对C语言还不太了解的话&#xff0c;可以看看博主的C语言专栏哟&#xff…

智能物流升级利器——SAIL-RK3576核心板AI边缘计算网关设计方案(一)

近年来&#xff0c;随着物流行业智能化和自动化水平不断提升&#xff0c;数据的实时处理与智能决策成为推动物流运输、仓储管理和配送优化的重要手段。传统的集中式云平台虽然具备强大计算能力&#xff0c;但高延迟和带宽限制往往制约了物流现场的即时响应。为此&#xff0c;我…