相加交互效应函数发布—适用于逻辑回归、cox回归、glmm模型、gee模型

在统计分析中交互作用是指某因素的作用随其他因素水平变化而变化,两因素共同作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。相互作用的评估是尺度相关的:乘法或加法。乘法尺度上的相互作用意味着两次暴露的综合效应大于(或小于)两次暴露单独效应的乘积。加性尺度上的相互作用意味着两次暴露的综合效应大于(或小于)两次暴露单独效应的总和。

在这里插入图片描述

目前在大量文章中只报道了乘法交互效应,而加法交互效应报道得较少。有文献表明,单单只用乘法交互效应低估了疾病协同的危险性,从而低估了发病率。

在这里插入图片描述

柳叶刀杂志:没有相乘效应并不代表没有相加效应。相乘模型,也要评估相加交互作用。

今天给大家演示一下,scitable包的scitb6函数,这是一个专门用于相加交互效应模型的函数,下面我给大家演示一下。
先导入数据和R包

setwd("E:/公众号文章2025年/一键相加交互函数")
library(interactionR)
bc<-read.csv("E:/r/test/jiaohu1.csv",sep=',',header=TRUE)

在这里插入图片描述

这个是interactionR包的示例数据,大家想必最关心的是可靠性的问题,先用两个权威的R包来生成结果,等会比较一下

model.glm <- glm(oc ~ alc * smk,
                 family = binomial(link = "logit"),
                 data = bc)
out<-interactionR(model.glm, 
                    exposure_names = c("alc", "smk"), 
                    ci.type = "mover", ci.level = 0.95, 
                    em = F, recode = F)

在这里插入图片描述
Reri:3.74,ap:0.41, si:1.87. 还是这个模型,咱们换个R包来做看,

library(epiR)
epi.interaction(model = model.glm, param = "product", coef = c(2,3,4), 
                conf.level = 0.95)

在这里插入图片描述

我们可以看到,两个R包的值都一样,但是可信区间不同,下面咱们使用scitb6函数来试一下,一句话代码出结果

library(scitable)
out<-scitb6(data=bc,x="alc",y="oc",Interaction="smk",cov = NULL,family="glm")

在这里插入图片描述
和上面2个R包基本一致,所以可靠性是绝对没有问题,其实虽然相加模型没有相乘好理解,但是毕竟公式摆在那里,基本不会算错的。

好的。下面咱们正式进入今天的主题,scitable包支持逻辑回归,cox回归,广义线性混合模型(glmm),广义估计方程(gee)的相加交互模型计算,下面我一一演示一下。

演示之前先说个题外话,我目前收集到2个文章模板觉得还行,结果是朝着这两个模板设计的
一个是下面这个文章:

在这里插入图片描述
在这里插入图片描述
另一个是文章:

在这里插入图片描述
在这里插入图片描述
怎么看这个结果,文字不怎么好说,专门在下面视频再说

正式开始,先导入我的一个不孕症数据

bc<-read.csv("E:/r/test/buyunzheng.csv",sep=',',header=TRUE)

在这里插入图片描述

数据有8个指标,最后两个是PSM匹配结果,我们不用理他,其余六个为:
Education:教育程度,age:年龄,parity产次,induced:人流次数,case:是否不孕,这是结局指标,spontaneous:自然流产次数。
有一些变量是分类变量,我们需要把它转换一下,我人为把年龄分成3段,好方便演示

bc$fage<-cut(bc$age,breaks = 3,labels = c(0,1,2))#平均分为3个区间,命名为0,1,2  可以看成低龄、中龄、高龄
##转分类变量成因子
bc$education<-ifelse(bc$education=="0-5yrs",0,ifelse(bc$education=="6-11yrs",1,2))
bc$spontaneous<-as.factor(bc$spontaneous)    # 可以看成没有流产、流产1次,流产2此以上
bc$case<-as.factor(bc$case)
bc$induced<-as.factor(bc$induced)
bc$education<-as.factor(bc$education)
bc$fage<-as.factor(bc$fage)

设置一下分层变量和协变量,方法和scitb5几乎一样,如果你用过前面的,可以轻松上手

cov1<-c("parity")
Interaction<-c("spontaneous")

一键生成表格,有两种格式,先说第一种

out<-scitb6(data=bc,x="fage",y="case",Interaction=Interaction,cov = cov1,family="glm")

在这里插入图片描述
看到这个你可能会说,这是什么呀,我知道你很懵逼,但是请你先别懵逼,我继续演示,等会再解释,绘制森林图

scitb6forest(out)

在这里插入图片描述
文章中的森林图就出来了,第二种格式

out<-scitb6(data=bc,x="fage",y="case",Interaction=Interaction,cov = cov1,family="glm",type = "B")

好了,两者结果都出来了,我来解释一下,我们先把第一个表格导出来

putoutdata(out)

查看一下生成结果

在这里插入图片描述
我们对这个结果手动改一下,这样感觉是不是就很熟悉了

在这里插入图片描述
还是不明白咱们再对比一下,

在这里插入图片描述
在这里插入图片描述

手动改一下就直接可以投稿了。下面介绍一下cox回归,差不多的,导入并整理数据

library(foreign)
library(survival)
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)
bc$histgrad<-as.factor(bc$histgrad)
bc$pathscat<-as.factor(bc$pathscat)

设置协变量和分层变量

cov1<-c("er")
Interaction<-c("histgrad")

生成结果

out<-scitb6(data=bc,x="ln_yesno",y="status",Interaction=Interaction,cov = cov1,family="cox",time="time")
scitb6forest(out)

在这里插入图片描述
下面来个广义混合线性模型的,生成一个数据,其实就是前面的数据加个随机项

##先生成一个数据
can <- c(rep(1, times = 231), rep(0, times = 178), rep(1, times = 11), 
         rep(0, times = 38))
smk <- c(rep(1, times = 225), rep(0, times = 6), rep(1, times = 166), 
         rep(0, times = 12), rep(1, times = 8), rep(0, times = 3), rep(1, times = 18), 
         rep(0, times = 20))
alc <- c(rep(1, times = 409), rep(0, times = 49))
dat.df01 <- data.frame(alc, smk, can)
dat.df01$d <- rep(NA, times = nrow(dat.df01))
dat.df01$d[dat.df01$alc == 0 & dat.df01$smk == 0] <- 0
dat.df01$d[dat.df01$alc == 1 & dat.df01$smk == 0] <- 1
dat.df01$d[dat.df01$alc == 0 & dat.df01$smk == 1] <- 2
dat.df01$d[dat.df01$alc == 1 & dat.df01$smk == 1] <- 3
dat.df01$d <- factor(dat.df01$d)
set.seed(1234)
dat.df01$inst <- round(runif(n = nrow(dat.df01), min = 1, max = 5), digits = 0)

在这里插入图片描述
做法差不多的,就是加个ID和改下family

bc<-dat.df01
bc$alc<-as.factor(bc$alc)
bc$smk<-as.factor(bc$smk)
out<-scitb6(data=bc,x="alc",y="can",Interaction="smk",id="inst",cov = NULL,family="lme4")

在这里插入图片描述
最后就是gee模型

#######gee模型
out<-scitb6(data=bc,x="alc",y="can",Interaction="smk",id="inst",cov = NULL,family="gee")
scitb6forest(out)

在这里插入图片描述
可以看到gee和glmm模型算出来的东西基本一样。

看文字理解有点费劲,下面还有视频,欢迎观看

相加效应交互函数发布—适用于逻辑回归、cox回归、glmm、gee模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/953853.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot 2 学习全攻略

Spring Boot 2 学习资料 Spring Boot 2 学习资料 Spring Boot 2 学习资料 在当今快速发展的 Java 后端开发领域&#xff0c;Spring Boot 2 已然成为一股不可忽视的强大力量。它简化了 Spring 应用的初始搭建以及开发过程&#xff0c;让开发者能够更加专注于业务逻辑的实现&am…

【面试题】技术场景 4、负责项目时遇到的棘手问题及解决方法

工作经验一年以上程序员必问问题 面试题概述 问题为在负责项目时遇到的棘手问题及解决方法&#xff0c;主要考察开发经验与技术水平&#xff0c;回答不佳会影响面试印象。提供四个回答方向&#xff0c;准备其中一个方向即可。 1、设计模式应用方向 以登录为例&#xff0c;未…

30分钟内搭建一个全能轻量级springboot 3.4 + 脚手架 <1> 5分钟快速创建一个springboot web项目

快速导航 <1> 5分钟快速创建一个springboot web项目 <2> 5分钟集成好最新版本的开源swagger ui&#xff0c;并使用ui操作调用接口 <3> 5分钟集成好druid并使用druid自带监控工具监控sql请求 <4> 5分钟集成好mybatisplus并使用mybatisplus generator自…

【Rust自学】11.10. 集成测试

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 11.10.1. 什么是集成测试 在Rust里&#xff0c;集成测试完全位于被测试库的外部。集成测试调用库的方式和其他代码一样&#xff0c;这也…

JAVA实现2048小游戏(附源码)

文章目录 一、设计来源2048小游戏讲解1.1 主界面1.2 4*4难度界面1.3 5*5难度界面1.4 6*6难度界面1.5 挑战失败提示界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载更多优质源码分享 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/a…

【自动化测试】—— Appium安装配置保姆教程(图文详解)

目录 一. 环境准备 二. JDK安装 1. 下载JDK 2. 安装JDK 3. 配置环境 4. 验证安装 三. Android SDK安装 1. 下载Android SDK 2. 安装Android SDK 3. 安装工具 4. 配置环境 5. 验证安装 四. NodeJS安装 1. 下载NodeJS 2. 安装NodeJS 3. 验证安装 4. 安装淘宝镜像…

vs2022+QT6.7.3打包程序流程

1、新建目录test 2、将项目配置为Release X64&#xff0c;生成XXX.exe 3、将XXX.exe放到test目录 4、管理员方式打开Qt 6.7.3 (MSVC 2022 64-bit)&#xff0c;进入test目录&#xff0c;执行&#xff1a;windeployqt6.exe XXX.exe 5、管理员方式打开x64 Native Tools Command…

RabbitMQ---消息确认和持久化

&#xff08;一&#xff09;消息确认 1.概念 生产者发送消息后&#xff0c;到达消费端会有以下情况&#xff1a; 1.消息处理成功 2.消息处理异常 如果RabbitMQ把消息发送给消费者后就把消息删除&#xff0c;那么就可能会导致&#xff0c;消息处理异常想要再获取这条消息的时…

【C++】反向迭代器

反向迭代器 一.源码及框架分析二.反向迭代器实现代码1.ReverseIterator.h2.Vector.h3.List.h4.Test.cpp 一.源码及框架分析 SGI-STL30版本源代码&#xff0c;反向迭代器实现的核心源码在stl_iterator.h中&#xff0c;反向迭代器是一个适配器&#xff0c;各个容器中再适配出自己…

浅谈云计算02 | 云计算模式的演进

云计算计算模式的演进 一、云计算计算模式的起源追溯1.2 个人计算机与桌面计算 二、云计算计算模式的发展阶段2.1 效用计算的出现2.2 客户机/服务器模式2.3 集群计算2.4 服务计算2.5 分布式计算2.6 网格计算 三、云计算计算模式的成熟与多元化3.1 主流云计算服务模式的确立3.1.…

WEB 攻防-通用漏-XSS 跨站脚本攻击-反射型/存储型/DOMBEEF-XSS

XSS跨站脚本攻击技术&#xff08;一&#xff09; XSS的定义 XSS攻击&#xff0c;全称为跨站脚本攻击&#xff0c;是指攻击者通过在网页中插入恶意脚本代码&#xff0c;当用户浏览该网页时&#xff0c;恶意脚本会被执行&#xff0c;从而达到攻击目的的一种安全漏洞。这些恶意脚…

Vue3组件设计模式:高可复用性组件开发实战

Vue3组件设计模式:高可复用性组件开发实战 一、前言 在Vue3中&#xff0c;组件设计和开发是非常重要的&#xff0c;它直接影响到应用的可维护性和可复用性。本文将介绍如何利用Vue3组件设计模式来开发高可复用性的组件&#xff0c;让你的组件更加灵活和易于维护。 二、单一职责…

深度剖析RabbitMQ:从基础组件到管理页面详解

文章目录 一、简介二、Overview2.1 Overview->Totals2.2 Overview->Nodesbroker的属性2.3 Overview->Churn statistics2.4 Overview->Ports and contexts2.5 Overview->Export definitions2.6 Overview->Import definitions 三、Connections连接的属性 四、C…

Unity 语音转文字 Vosk 离线库

市场有很多语音库&#xff0c;这里介绍Vosk SDK 除了支持untiy外还有原生开发服务器等 目录 安装unity示例demo下载语音训练文件运行demo结尾一键三联 注意事项 有可能debug出来的文本是空的&#xff0c;&#xff08;确保麦克风正常&#xff0c;且索引正确&#xff09;分大…

播放音频文件同步音频文本

播放音频同步音频文本 对应单个文本高亮显示 使用audio音频文件对应音频文本资源 音频文本内容&#xff08;Json&#xff09; [{"end": 4875,"index": 0,"speaker": 0,"start": 30,"text": "70号二啊,","tex…

【React】新建React项目

目录 create-react-app基础运用React核心依赖React 核心思想&#xff1a;数据驱动React 采用 MVC体系package.jsonindex.html好书推荐 官方提供了快速构建React 项目的脚手架&#xff1a; create-react-app &#xff0c;目前使用它安装默认是19版本&#xff0c;我们这里降为18…

mac homebrew配置使用

本文介绍mac上homebrew工具的安装、配置过程。homebrew功能类似于centos的yum&#xff0c;用于软件包的管理&#xff0c;使用上有命令的差异。 本次配置过程使用mac&#xff0c;看官方文档&#xff0c;在linux上也可以用&#xff0c;但我没试过&#xff0c;有兴趣的同学可以试试…

第一次作业三种方式安装mysql(Windows和linux下)作业

在Windows11上安装sever&#xff08;服务&#xff09;端和客户端 server端安装 打开官网MySQL 进入到主页 点击DOWMLOAD 进入下载界面 点击下方MySQL Community (GPL) Downloads 进入社区版mysql下载界面 点击 MySQL Community Server 进入server端下载 选择8.4.3LTS&…

基于Media+Unity的手部位姿三维位姿估计

使用mediapipe Unity 手部位姿三维位姿估计 参考文章 基于Mediapipe的姿势识别并同步到Unity人体模型中 MediapipeUnity3d实现虚拟手_unity mediapipe-CSDN博客 需求 我的需求就是快速、准确的跟踪手部位姿并实现一个三维显示。 主要思路 搭建mdeiapipe系统&#xff0c…

【C++】IO 流

文章目录 &#x1f449;C 语言的输入与输出&#x1f448;&#x1f449;流是什么&#x1f448;&#x1f449;C IO 流&#x1f448;C 标准 IO 流C 和 C 语言的输入格式问题C 的多次输入内置类型和自定义类型的转换日期的多次输入C 文件 IO 流文本文件和二进制文件的读写 &#x1…