【深度学习基础】线性神经网络 | 线性回归的简洁实现

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、生成数据集
    • 二、读取数据集
    • 三、定义模型
    • 四、初始化模型参数
    • 五、定义损失函数
    • 六、定义优化算法
    • 七、训练
    • 小结


  在过去的几年里,出于对深度学习强烈的兴趣,许多公司、学者和业余爱好者开发了各种成熟的开源框架。这些框架可以自动化基于梯度的学习算法中重复性的工作。在【深度学习基础】线性神经网络 | 线性回归的从零开始实现 中,我们只运用了:(1)通过张量来进行数据存储和线性代数;(2)通过自动微分来计算梯度。实际上,由于数据迭代器、损失函数、优化器和神经网络层很常用,现代深度学习库也为我们实现了这些组件。

  本节将介绍如何通过使用深度学习框架来简洁地实现【深度学习基础】线性神经网络 | 线性回归的从零开始实现 中的线性回归模型。

一、生成数据集

  与【深度学习基础】线性神经网络 | 线性回归的从零开始实现 中类似,我们首先生成数据集。

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

二、读取数据集

  我们可以调用框架中现有的API来读取数据。我们将featureslabels作为API的参数传递,并通过数据迭代器指定batch_size。此外,布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。

def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)

  使用data_iter的方式与我们在【深度学习基础】线性神经网络 | 线性回归的从零开始实现 中使用data_iter函数的方式相同。为了验证是否正常工作,让我们读取并打印第一个小批量样本。与【深度学习基础】线性神经网络 | 线性回归的从零开始实现 不同,这里我们使用iter构造Python迭代器,并使用next从迭代器中获取第一项。

next(iter(data_iter))

在这里插入图片描述

三、定义模型

  当我们在【深度学习基础】线性神经网络 | 线性回归的从零开始实现 中实现线性回归时,我们明确定义了模型参数变量,并编写了计算的代码,这样通过基本的线性代数运算得到输出。但是,如果模型变得更加复杂,且当我们几乎每天都需要实现模型时,自然会想简化这个过程。这种情况类似于为自己的博客从零开始编写网页。做一两次是有益的,但如果每个新博客就需要工程师花一个月的时间重新开始编写网页,那并不高效。

  对于标准深度学习模型,我们可以使用框架的预定义好的层。这使我们只需关注使用哪些层来构造模型,而不必关注层的实现细节。我们首先定义一个模型变量net,它是一个Sequential类的实例。Sequential类将多个层串联在一起。当给定输入数据时,Sequential实例将数据传入到第一层,然后将第一层的输出作为第二层的输入,以此类推。在下面的例子中,我们的模型只包含一个层,因此实际上不需要Sequential。但是由于以后几乎所有的模型都是多层的,在这里使用Sequential会让你熟悉“标准的流水线”。

  回顾【深度学习基础】线性神经网络 | 线性回归 图2中的单层网络架构,这一单层被称为全连接层(fully-connected layer),因为它的每一个输入都通过矩阵-向量乘法得到它的每个输出。

  在PyTorch中,全连接层在Linear类中定义。值得注意的是,我们将两个参数传递到nn.Linear中。第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。

# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

四、初始化模型参数

  在使用net之前,我们需要初始化模型参数。如在线性回归模型中的权重和偏置。深度学习框架通常有预定义的方法来初始化参数。在这里,我们指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采样,偏置参数将初始化为零。

  正如我们在构造nn.Linear时指定输入和输出尺寸一样,现在我们能直接访问参数以设定它们的初始值。我们通过net[0]选择网络中的第一个图层,然后使用weight.databias.data方法访问参数。我们还可以使用替换方法normal_fill_来重写参数值。

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

在这里插入图片描述

五、定义损失函数

  计算均方误差使用的是MSELoss类,也称为平方 L 2 L_2 L2范数。默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

六、定义优化算法

  小批量随机梯度下降算法是一种优化神经网络的标准工具,PyTorch在optim模块中实现了该算法的许多变种。当我们实例化一个SGD实例时,我们要指定优化的参数(可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。小批量随机梯度下降只需要设置lr值,这里设置为0.03。

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

七、训练

  通过深度学习框架的高级API来实现我们的模型只需要相对较少的代码。我们不必单独分配参数、不必定义我们的损失函数,也不必手动实现小批量随机梯度下降。当我们需要更复杂的模型时,高级API的优势将大大增加。当我们有了所有的基本组件,训练过程代码与我们从零开始实现时所做的非常相似。

  回顾一下:在每个迭代周期里,我们将完整遍历一次数据集(train_data),不停地从中获取一个小批量的输入和相应的标签。对于每一个小批量,我们会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失l(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。

  为了更好的衡量训练效果,我们计算每个迭代周期后的损失,并打印它来监控训练过程。

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

在这里插入图片描述

  下面我们比较生成数据集的真实参数和通过有限数据训练获得的模型参数。要访问参数,我们首先从net访问所需的层,然后读取该层的权重和偏置。正如在从零开始实现中一样,我们估计得到的参数与生成数据的真实参数非常接近。

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

在这里插入图片描述

小结

  • 我们可以使用PyTorch的高级API更简洁地实现模型。
  • 在PyTorch中,data模块提供了数据处理工具,nn模块定义了大量的神经网络层和常见损失函数。
  • 我们可以通过_结尾的方法将参数替换,从而初始化参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/950394.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

工业级手持地面站(支持Android和IOS)技术详解!

一、硬件平台的选择 无人机遥控器为了支持Android和iOS系统,通常会选择高性能的处理器和操作系统作为硬件基础。例如,一些高端遥控器可能采用基于ARM架构的高性能处理器,这些处理器能够高效地运行Android或iOS操作系统,并提供足够…

CatLog的使用

一 CatLog的简介 1.1 作用 CAT(Central Application Tracking) 是基于 Java 开发的实时应用监控平台,为美团点评提供了全面的实时监控告警服务。 1.2 组成部分 1.2.1 Transaction 1.Transaction 适合记录跨越系统边界的程序访问行为&a…

vue elementui 大文件进度条下载

下载进度条 <el-card class"box-card" v-if"downloadProgress > 0"><div>正在下载文件...</div><el-progress :text-inside"true" :stroke-width"26" :percentage"downloadProgress" status"…

TensorRT-LLM中的MoE并行推理

2种并行方式&#xff1a; moe_tp_size&#xff1a;按照维度切分&#xff0c;每个GPU拥有所有Expert的一部分权重。 moe_ep_size: 按照Expert切分&#xff0c;每个GPU有用一部分Expert的所有权重。 二者可以搭配一起使用。 限制&#xff1a;二者的乘积&#xff0c;必须等于模…

计算机的错误计算(二百零五)

摘要 基于一位读者的问题&#xff0c;提出题目&#xff1a;能用数值计算证明 吗&#xff1f;请选用不同的点&#xff08;即差别大的数&#xff09;与不同的精度。实验表明&#xff0c;大模型理解了题意。但是&#xff0c;其推理能力值得商榷。 例1. 就摘要中问题&#xff0…

关于TCP/IP五层结构的理解

关于TCP/IP五层结构的理解 TCP/IP五层模型 是目前被广泛采用的一种模型,我们可以将 TCP / IP 模型看作是 OSI 七层模型的精简版本&#xff0c;由以下 5 层组成&#xff1a; 1. 应用层&#xff1a;应用层是体系结构中的最高层&#xff0c;定义了应用进程间通信和交互的规则。本…

Unity3D仿星露谷物语开发19之库存栏丢弃及交互道具

1、目标 从库存栏中把道具拖到游戏场景中&#xff0c;库存栏中道具数相应做减法或者删除道具。同时在库存栏中可以交换两个道具的位置。 2、UIInventorySlot设置Raycast属性 在UIInventorySlot中&#xff0c;我们只希望最外层的UIInventorySlot响应Raycast&#xff0c;他下面…

Sprint Boot教程之五十:Spring Boot JpaRepository 示例

Spring Boot JpaRepository 示例 Spring Boot建立在 Spring 之上&#xff0c;包含 Spring 的所有功能。由于其快速的生产就绪环境&#xff0c;使开发人员能够直接专注于逻辑&#xff0c;而不必费力配置和设置&#xff0c;因此如今它正成为开发人员的最爱。Spring Boot 是一个基…

C++ STL map和set的使用

序列式容器和关联式容器 想必大家已经接触过一些容器如&#xff1a;list&#xff0c;vector&#xff0c;deque&#xff0c;array&#xff0c;forward_list&#xff0c;string等&#xff0c;这些容器统称为系列容器。因为逻辑结构为线性的&#xff0c;两个位置的存储的值一般是…

人工智能及深度学习的一些题目(三)

1、【填空题】 使用RNNCTC模型进行语音识别&#xff0c;在产生预测输出时&#xff0c;对于输入的音频特征序列通过网络预测产生对应的字母序列&#xff0c;可以使用&#xff08; beamsearch &#xff09;算法进行最优路径搜索。 2、【填空题】 逻辑回归模型属于有监督学习中的&…

《C++11》右值引用深度解析:性能优化的秘密武器

C11引入了一个新的概念——右值引用&#xff0c;这是一个相当深奥且重要的概念。为了理解右值引用&#xff0c;我们需要先理解左值和右值的概念&#xff0c;然后再理解左值引用和右值引用。本文将详细解析这些概念&#xff0c;并通过实例进行说明&#xff0c;以揭示右值引用如何…

cp命令详解

&#x1f3dd;️专栏&#xff1a;计算机操作系统 &#x1f305;主页&#xff1a;猫咪-9527主页 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 1. 基本功能 2. 命令语法 3. 常用选项 4. 常见用法示例 4.1 复制单个文件 4.2 递归复制目录…

Git的学习和常见问题

文章目录 1.初始化配置2.新建仓库3.添加和提交文件4.git reset 回退版本5.git diff 查看差异6.git rm 删除文件7.文件 .gitigonre8.克隆远程仓库9.将已有的本地仓库关联到远程仓库10.分支的基本操作11.解决合并冲突配置问题 最近基于GeekHour的视频学习Git&#xff0c;记录了一…

《Mcal》--MCU模块

一、MCU模块的主要功能 控制系统时钟的产生。控制系统通用模块&#xff0c;该模块会涉及到Adc、Ftm等外设的配置。控制外设时钟。控制MCU运行的模式。初始化定义RAM Section。 比较重要的是时钟的配置。 二、系统时钟的配置 1、芯片时钟树 要想弄明白时钟配置&#xff0c;需…

【每日学点鸿蒙知识】查看触摸热区范围、直接赋值到剪贴板、组件截图、横竖屏切换、防截图等

1、如何查看触摸热区范围&#xff1f; 前只能通过自定义的方式获取responseRegion。参考文档&#xff1a;触摸热区设置 Entry Component struct TouchTargetExample {State text: string State x:number 0State y:number 0State reg_width:string 50%State reg_height:st…

ThinkPHP 8高效构建Web应用-获取请求对象

【图书介绍】《ThinkPHP 8高效构建Web应用》-CSDN博客 《2025新书 ThinkPHP 8高效构建Web应用 编程与应用开发丛书 夏磊 清华大学出版社教材书籍 9787302678236 ThinkPHP 8高效构建Web应用》【摘要 书评 试读】- 京东图书 使用VS Code开发ThinkPHP项目-CSDN博客 编程与应用开…

记一次k8s下容器启动失败,容器无日志问题排查

问题 背景 本地开发时&#xff0c;某应用增加logback-spring.xml配置文件&#xff0c;加入必要的依赖&#xff1a; <dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>8…

STM32烧写失败之Contents mismatch at: 0800005CH (Flash=FFH Required=29H) !

一&#xff09;问题&#xff1a;用ULINK2给STM32F103C8T6下载程序&#xff0c;下载方式设置如下&#xff1a; 出现下面两个问题&#xff1a; 1&#xff09;下载问题界面如下&#xff1a; 这个错误的信息大概可以理解为&#xff0c;在0x08000063地址上读取到flash存储为FF&am…

vscode通过ssh连接服务器实现免密登录

一、通过ssh连接服务器 1、打开vscode&#xff0c;进入拓展&#xff08;CtrlShiftX&#xff09;&#xff0c;下载拓展Remote - SSH。 2、点击远程资源管理器选项卡&#xff0c;选择远程&#xff08;隧道/SSH&#xff09;类别。 3、点击SSH配置。 4、在中间上部分弹出的配置文件…

在Nvidia Jetson ADX Orin中使用TensorRT-LLM运行llama3-8b

目录 背景&#xff1a;步骤 1.获取模型权重第 2 步&#xff1a;准备第 3 步&#xff1a;构建 TensorRT-LLM 引擎 背景&#xff1a; 大型语言模型 &#xff08;LLM&#xff09; 推理的关键瓶颈在于 GPU 内存资源短缺。因此&#xff0c;各种加速框架主要强调减少峰值 GPU 内存使…