回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

数据准备:准备你的输入数据和目标输出数据。
数据预处理:将数据进行归一化或标准化处理,并划分为训练集和测试集。
构建模型:使用MATLAB的深度学习工具箱来构建CNN-GRU模型。
训练模型:使用训练数据来训练模型。
评估模型:使用验证集和测试集来评估模型的性能。
预测:使用训练好的模型进行预测。

程序设计

  • 完整代码:MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  

%% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺

for i = 1:size(P_train,2)
    trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
end

for i = 1:size(p_test,2)
    testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
end


targetD =  t_train;
targetD_test  =  t_test;

numFeatures = size(p_train,1);


layers0 = [ ...



参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/947623.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVA创建绘图板JAVA构建主窗口鼠标拖动来绘制线条

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默, 忍不住分享一下给大家。点击跳转到网站 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……) 2、学会Oracle数据库入门到入土用法(创作中……) 3、手把…

CSS层叠样式表

目标 能够说出什么是CSS能够使用CSS基础选择器能够设置字体样式能够设置文本样式能够说出CSS的三种引入方式能够使用Chrome调试工具调试样式 目录 CSS简介CSS基础选择器CSS字体属性CSS文本属性CSS的引入方式综合案例Chrome调试工具 1.1 HTML的局限性 说起HTML,…

Win32汇编学习笔记03.RadAsm和补丁

Win32汇编学习笔记03.RadAsm和补丁-C/C基础-断点社区-专业的老牌游戏安全技术交流社区 - BpSend.net 扫雷游戏啊下补丁 在扫雷游戏中,点关闭弹出一个确认框,确认之后再关闭,取消就不关闭 首先第一步就是确认关闭按钮响应的位置,一般都是 WM_CLOSE 的消息 ,消息响应一般都在过…

深入Android架构(从线程到AIDL)_08 认识Android的主线程

目录 3、 认识Android的主线程(又称UI线程) 复习: 各进程(Process)里的主线程​编辑 UI线程的责任: 迅速处理UI事件 举例 3、 认识Android的主线程(又称UI线程) 复习: 各进程(Process)里的主线程 UI线程的责任: 迅速处理UI事…

4.CSS文本属性

4.1文本颜色 div { color:red; } 属性值预定义的颜色值red、green、blue、pink十六进制#FF0000,#FF6600,#29D794RGB代码rgb(255,0,0)或rgb(100%,0%,0%) 4.2对齐文本 text-align 属性用于设置元素内文本内容的水平对齐方式。 div{ text-align:center; } 属性值解释left左对齐ri…

数据挖掘——支持向量机分类器

数据挖掘——支持向量机分类器 支持向量机最小间隔面推导基于软间隔的C-SVM非线性SVM与核变换常用核函数 支持向量机 根据统计学习理论,学习机器的实际风险由经验风险值和置信范围值两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小…

慧集通iPaaS集成平台低代码培训-基础篇

训练使用素材: 1.数据源: 单号业务日期工厂仓库物料单位数量批次0100012022-5-1210031001030001kg500202304150100012022-5-1210031001030001kg122202304150100012022-5-1210031001030001kg1250202304150100012022-5-1210031001030002kg130202304110100…

深入理解计算机系统—虚拟内存(一)

一个系统中的进程是与其他进程共享 CPU 和主存资源的。然而,共享主存会形成特殊的挑战。随着对 CPU 需求的增长,进程以某种合理的平滑方式慢了下来。但是如果太多的进程需要太多的内存,那么它们中的一些就根本无法运行。 为了更加有效地管理内…

Unresolved plugin: ‘org.apache.maven.plugins:maven-site-plugin:3.12.1‘

问题 使用idea 社区办加载项目提示下面问题: Unresolved plugin: org.apache.maven.plugins:maven-site-plugin:3.12.1 问题解决 maven插件地址: https://maven.apache.org/plugins/maven-dependency-plugin/plugins.html Maven 中央仓库地址&#…

如何在 Windows 10/11 上录制带有音频的屏幕 [3 种简单方法]

无论您是在上在线课程还是参加在线会议,您都可能需要在 Windows 10/11 上录制带有音频的屏幕。互联网上提供了多种可选方法。在这里,本博客收集了 3 种最简单的方法来指导您如何在 Windows 10/11 上使用音频进行屏幕录制。请继续阅读以探索! …

spring中使用@Validated,什么是JSR 303数据校验,spring boot中怎么使用数据校验

文章目录 一、JSR 303后台数据校验1.1 什么是 JSR303?1.2 为什么使用 JSR 303? 二、Spring Boot 中使用数据校验2.1 基本注解校验2.1.1 使用步骤2.1.2 举例Valid注解全局统一异常处理 2.2 分组校验2.2.1 使用步骤2.2.2 举例Validated注解Validated和Vali…

AWS K8s 部署架构

Amazon Web Services(AWS)提供了一种简化的Kubernetes(K8s)部署架构,使得在云环境中管理和扩展容器化应用变得更加容易。这个架构的核心是AWS EKS(Elastic Kubernetes Service),它是…

设计模式 结构型 适配器模式(Adapter Pattern)与 常见技术框架应用 解析

适配器模式(Adapter Pattern)是一种结构型设计模式,它允许将一个类的接口转换成客户端所期望的另一个接口,从而使原本因接口不兼容而无法一起工作的类能够协同工作。这种设计模式在软件开发中非常有用,尤其是在需要集成…

MCU芯片是什么意思_有哪些作用?

MCU(Microcontroller Unit)芯片,即微控制单元,是一种集成了中央处理器(CPU)、存储器(ROM、RAM)以及各种外设接口(如输入输出引脚、定时器、串口等)的集成电路芯片。它通过超大规模集成电路技术,将具有数据处理能力的中央处理器、随机存储器、…

如何免费解锁 IPhone 网络

您是否担心 iPhone 上的网络锁定?如果您的 iPhone 被锁定到特定运营商,解锁它可以连接到不同的运营商。好吧,我们为您准备了一份指南。 iPhone运营商免费解锁将是小菜一碟。在我们的解锁运营商 iphone 免费指南中。我们为您提供了一份简介&am…

Spring Security(maven项目) 3.0.2.4版本

前言: 通过实践而发现真理,又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识,又从理性认识而能动地指导革命实践,改造主观世界和客观世界。实践、认识、再实践、再认识,这种形式,循环往…

计算机的错误计算(二百)

摘要 用三个大模型计算 exp(123.456). 结果保留10位有效数字。三个大模型的输出均是错误的,虽然其中一个给出了正确的 Python代码。 例1. 计算 exp(123.456). 保留10位有效数字。 下面是与第一个大模型的对话。 以上为与一个大模型的对话。 下面是与另外一个大模…

Golang的缓存一致性策略

Golang的缓存一致性策略 一致性哈希算法 在Golang中,缓存一致性策略通常使用一致性哈希算法来实现。一致性哈希算法能够有效地解决缓存节点的动态扩容、缩容时数据重新分布的问题,同时能够保证数据访问的均衡性。 一致性哈希算法的核心思想是将节点的哈希…

.e01, ..., .e0n的分卷压缩包怎么解压

用BandiZip,这些分卷压缩中还有一个.exe的文件,这个不是可执行文件,是一个解压缩的开头。 安装好bandiZip后,右键这个.exe文件 点击打开就是开始解压了: 最后解压后是这些。然后一个个再次解压.

微机接口课设——基于Proteus和8086的打地鼠设计(8255、8253、8259)Proteus中Unknown 1-byte opcode / Unknown 2-byte opcode错误

原理图设计 汇编代码 ; I/O 端口地址定义 IOY0 EQU 0600H IOY1 EQU 0640H IOY2 EQU 0680HMY8255_A EQU IOY000H*2 ; 8255 A 口端口地址 MY8255_B EQU IOY001H*2 ; 8255 B 口端口地址 MY8255_C EQU IOY002H*2 ; 8255 C 口端口地址 MY8255_MODE EQU IOY003H*2 ; …