数据挖掘——关联规则挖掘

数据挖掘——关联数据挖掘

  • 关联数据挖掘
    • 关联规则
    • 关联规则挖掘问题:
    • 具体挖掘过程
      • Apriori
    • 产生关联规则

关联数据挖掘

关联分析用于发现隐藏在大型数据集中的令人感兴趣的联系,所发现的模式通常用关联规则或频繁项集的形式表示。

关联规则反映一个事物与其它事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物发生就能够预测与它相关联的其它事物的发生。
在这里插入图片描述
定义:频繁项集

项集(Itemset)

  • 包含0个或多个项的集合
    • 例子:{Milk, Bread, Diaper}
  • k-项集
    • 如果一个项集包含k个项

支持度计数(Supportcount)( σ \sigma σ)

  • 包含特定项集的事务个数
  • 例如: σ \sigma σ({Milk,Bread,Diaper}) = 2

支持度(Support)

  • 包含项集的事务数与总事务数的比值
  • 例如: s({Milk,Bread, Diaper}) = 2/5

频繁项集(FrequentItemset)

  • 满足最小支持度阈值(minsup )的所有项集

频繁闭项集

  • 所谓闭项集,就是指一个项集X,它的直接超集的支持度计数都不等于它本身的支持度计数。如果闭项集同时是频繁的,也就是它的支持度大于等于最小支持度阈值,那它就称为闭频繁项集。

最大频繁项集
最大频繁项集是这样的频繁项集,它的直接超集都不是频繁的
在这里插入图片描述

关联规则

关联规则是形如X →Y的蕴含表达式, 其中 X 和 Y 是不相交的项集

  • 例子:{Milk, Diaper} →{Beer}

关联规则的强度

  • 支持度 Support (s)
    确定项集的频繁程度
  • 置信度 Confidence (c)
    确定Y在包含X的事务中出现的频繁程度

在这里插入图片描述

关联规则挖掘问题:

给定事务的集合 T, 关联规则发现是指找出支持度大于等于minsup并且置信度大于等于minconf的所有规则, minsup和minconf是对应的支持度和置信度阈值

具体挖掘过程

大多数关联规则挖掘算法通常采用的一种策略是,将关联规则挖掘任务分解为如下两个主要的子任务:

  • 频繁项集产生(Frequent Itemset Generation)
    • 其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
  • 规则的产生(Rule Generation)
    • 其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则(strong rule)。

降低产生频繁项集计算复杂度的方法

  1. 减少候选项集的数量
    • 先验原理:(Apriori)
  2. 减少比较的次数
    • 替代将每个候选项集与每个事务相匹配,可以使用更高级的数据结构,或存储候选项集或压缩数据集,来减少比较次数(FPGrowth)

Apriori

先验原理

  • 如果一个项集是频繁的,则它的所有子集一定也是频繁的
  • 相反,如果一个项集是非频繁的,则它的所有超集也一定是非频繁的

在这里插入图片描述
需要一提的是Apriori中所运用到的项的连接准则:

项的连接准则:去掉尾项之后如果二者一样则可以连接
例如本例中{A,C},{B,C},{B,E},{C,E}四者,只有{B,C},{B,E},两者去掉尾项后的B是相等的,所以是可以连接的{B,C,E}

Apriori算法特点

优点

  • 使用先验性质,大大提高了频繁项集逐层产生的效率
  • 简单易理解;数据集要求低

缺点

  • 多次扫描数据库
  • 候选项规模庞大
  • 计算支持度开销大

Apriori算法需要反复的生成候选项,如果项的数目比较大,候选项的数目将达到组合爆炸式的增长

提高Apriori算法性能的方法
在这里插入图片描述

产生关联规则

任务描述:给定频繁项集Y, 查找Y的所有非空真子集 X ∈ Y X \in Y XY,使得 X → Y – X X \rightarrow Y –X XYX 的置信度超过最小置信度阈值minconf

  • 例子:If {A,B,C} is a frequent itemset, 候选规则如下:
    A B → C A → B C A C → B B → A C B C → A C → A B AB \rightarrow C\\ A\rightarrow BC\\ AC \rightarrow B\\ B \rightarrow AC\\ BC \rightarrow A\\ C \rightarrow AB ABCABCACBBACBCACAB
    如果 |Y| = k, 那么会有 2k–2 个候选关联规则 (不包括 Y → ∅ 、 ∅ → Y Y→\emptyset、 \empty →Y YY

如何高效地从频繁项集中产生关联规则?

  • 通常置信度不满足反单调性(anti-monotone property ),例如:
  • c(ABC →D) 可能大于也可能小于 c(AB →D)
  • 但是,针对同一个频繁项集的关联规则,如果规则的后件满足子集关系,那么这些规则的置信度间满足反单调性
  • e.g., Y = A , B , C , D c ( A B C → D ) ≥ c ( A B → C D ) ≥ c ( A → B C D ) Y= {A,B,C,D}\\ c(ABC → D) \geq c(AB → CD) \geq c(A → BCD) Y=A,B,C,Dc(ABCD)c(ABCD)c(ABCD)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/947301.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

12.30-1-5学习周报

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 文章链接摘要Abstract一、方法介绍1.HAT-CIR2.Horde3.DWGRNet 二、实验总结 文章链接 https://arxiv.org/pdf/2405.04101 摘要 本博客介绍了论文《Continual lea…

Synopsys软件基本使用方法

Synopsys软件基本使用方法 1 文件说明2 编译流程3 查看波形4 联合仿真 本文主要介绍Synopsys软件vcs、verdi的基本使用方法,相关文件可从 GitHub下载。 1 文件说明 创建verilog源文件add.v、mult.v、top.vmodule add (input signed [31:0] dina,input signed [3…

Linux-Redis哨兵搭建

环境资源准备 主机名IP端口号角色vm1192.168.64.156379/26379mastervm2192.168.64.166379/26379slavevm3192.168.64.176379/26379slave 6379为redis服务暴露端口号、26379为sentinel暴露端口号。 安装Redis # 包文件下载 wget https://github.com/redis/redis/archive/7.2.2…

【python】unittest单元测试

文章目录 基本使用不同启动方式的区别 基本使用 下面是根据文档写的一个demo,主要的内容基本都包含了,使用时导入自己的业务类测试类中的方法就行。 import unittest# 测试类不强制test开头,仅作为规范。但必须继承unittest.TestCase class…

基于SpringBoot的野生动物保护发展平台的设计与实现(源码+SQL+LW+部署讲解)

文章目录 摘 要1. 第1章 选题背景及研究意义1.1 选题背景1.2 研究意义1.3 论文结构安排 2. 第2章 相关开发技术2.1 前端技术2.2 后端技术2.3 数据库技术 3. 第3章 可行性及需求分析3.1 可行性分析3.2 系统需求分析 4. 第4章 系统概要设计4.1 系统功能模块设计4.2 数据库设计 5.…

Linux一些问题

修改YUM源 Centos7将yum源更换为国内源保姆级教程_centos使用中科大源-CSDN博客 直接安装包,走链接也行 Index of /7.9.2009/os/x86_64/Packages 直接复制里面的安装包链接,在命令行直接 yum install https://vault.centos.org/7.9.2009/os/x86_64/Pa…

ELK 使用教程采集系统日志 Elasticsearch、Logstash、Kibana

前言 你知道对于一个系统的上线考察,必备的几样东西是什么吗?其实这也是面试中考察求职者,是否真的做过系统开发和上线的必备问题。包括:服务治理(熔断/限流) (opens new window)、监控 (opens new window)和日志,如果…

04-spring-理-ApplicationContext的实现

实现1&#xff1a;ClassPathXmlApplicationContext 1、内部维护了 DefaultListableBeanFactory 2、通过XmlBeanDefinitionReader 读取配置文件将结果加入到 DefaultListableBeanFactory 3、没有维护 bean后置处理器 &#xff0c;可以通过在xml配置 <context:annotation-c…

【linux板卡】lubancat通过vnc远程访问桌面

鲁班猫开发板通过远程VNC连接桌面&#xff1a; 硬件&#xff1a;lubancat2&#xff0c;网线 软件&#xff1a;ssh软件&#xff0c;vnc viewer 参考链接&#xff1a;https://training.eeworld.com.cn/video/38821 1、ssh连接lubancat2 &#xff0c;输入ifconfig查看ip 2、输入 …

HarmonyOS Next ArkUI @State @Prop @Link @Provide @Consume笔记

学习目标&#xff1a; State装饰器 Prop装饰器 Link装饰器 Link装饰器 Provide装饰器 Consume装饰器 学习内容&#xff1a; GrandsonComponent Component export struct GrandsonComponent {Consume(provideValue) consumeValue: numberbuild() {Column(){Text(孙组件).font…

【GPT】Coze使用开放平台接口-【8】创建应用

coze 可以用来创建简单的应用啦&#xff0c;这样测试起来会比原本的 Agent 更加方便&#xff0c;我们来看看如何创建一个“语音Real不Real”的应用。这个应用就是来检测语音是否是伪造的&#xff0c;克隆或者是合成的。先看下原本 Agent 的样子&#xff1a; 深度伪造语音检测&a…

选择器(结构伪类选择器,伪元素选择器),PxCook软件,盒子模型

结构为类选择器 伪元素选择器 PxCook 盒子模型 (内外边距&#xff0c;边框&#xff09; 内外边距合并&#xff0c;塌陷问题 元素溢出 圆角 阴影: 模糊半径&#xff1a;越大越模糊&#xff0c;也就是越柔和 案例一&#xff1a;产品卡片 <!DOCTYPE html> <html lang&q…

[极客大挑战 2019]Knife1

这里很显然&#xff0c;根据提示可以猜测&#xff0c;已经有一句话木马上传了&#xff0c;但是路径这里不是很清楚&#xff0c;不知道路径在哪里&#xff0c;不过还是用菜刀连一下试试&#xff1a; 连接成功&#xff0c;在根目录下发现flag。不过如果不用菜刀&#xff0c;可以用…

面试手撕笔记ML/DL

数据集 数据集的批处理迭代器 Deep-ML | Batch Iterator for Dataset 实现一个批量可迭代函数&#xff0c;该函数在numpy数组X和可选numpy数组y中进行采样。该函数应该生成指定大小的批量。如果提供了y&#xff0c;则该函数应生成&#xff08;X, y&#xff09;对的批次&#…

flink cdc oceanbase(binlog模式)

接上文&#xff1a;一文说清flink从编码到部署上线 环境&#xff1a;①操作系统&#xff1a;阿里龙蜥 7.9&#xff08;平替CentOS7.9&#xff09;&#xff1b;②CPU&#xff1a;x86&#xff1b;③用户&#xff1a;root。 预研初衷&#xff1a;现在很多项目有国产化的要求&#…

JavaWeb开发(五)Servlet-ServletContext

1. ServletContext 1.1. ServletContext简介 1.1.1. ServletContext定义 ServletContext即Servlet上下文对象&#xff0c;该对象表示当前的web应用环境信息。 1.1.2. 获取ServletContext对象: &#xff08;1&#xff09;通过ServletConfig的getServletContext()方法可以得到…

ubuntu 如何使用vrf

在Ubuntu或其他Linux系统中&#xff0c;您使用ip命令和sysctl命令配置的网络和内核参数通常是临时的&#xff0c;这意味着在系统重启后这些配置会丢失。为了将这些配置持久化&#xff0c;您需要采取一些额外的步骤。 对于ip命令配置的网络接口和路由&#xff0c;您可以将这些配…

2024秋语法分析作业-B(满分25分)

特别注意&#xff1a;第17条产生式改为 17) Stmt → while ( Cond ) Stmt 【问题描述】 本次作业只测试一个含简单变量声明、赋值语句、输出语句、if语句和while语句的文法&#xff1a; 0) CompUnit → Block 1) Block → { BlockItemList } 2) BlockItemList → BlockItem…

SQL-leetcode-197. 上升的温度

197. 上升的温度 表&#xff1a; Weather ---------------------- | Column Name | Type | ---------------------- | id | int | | recordDate | date | | temperature | int | ---------------------- id 是该表具有唯一值的列。 没有具有相同 recordDate 的不同行。 该表包…

C#编写的金鱼趣味小应用 - 开源研究系列文章

今天逛网&#xff0c;在GitHub中文网上发现一个源码&#xff0c;里面有这个金鱼小应用&#xff0c;于是就下载下来&#xff0c;根据自己的C#架构模板进行了更改&#xff0c;最终形成了这个例子。 1、 项目目录&#xff1b; 2、 源码介绍&#xff1b; 1) 初始化&#xff1b; 将样…