ChatGPT Prompting开发实战(一)

一、关于ChatGPT Prompting概述

当我们使用ChatGPT或者调用OpenAI的API时,就是在使用prompt进行交互,用户在对话过程中输入的一切信息都是prompt(提示词),当然工业级的prompt与人们通常理解的prompt可能不太一样。下面是LangChain源码中的“retrieval_qa”模块里的prompt.py文件:

# flake8: noqa

from langchain.prompts import PromptTemplate

prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}

Helpful Answer:"""

PROMPT = PromptTemplate(

    template=prompt_template, input_variables=["context", "question"]

)

其中核心字段“prompt_template”定义了如何使用prompt进行推理。

在前面谈plugin开发时,谈到在开发的应用中,不仅仅是执行tasks,而且需要执行actions,这时就需要agent的参与。下面的架构图展示了用户在与ChatGPT进行交互时agent是如何来执行actions的:

二、基于工业级的源码来解析prompt engineering

LangChain框架一个核心的聚焦点就是agent,其中包括两个重要的模块“react”和“mrkl”。首先我们来看下“mrkl” 部分:

在这个模块中有一个prompt文件,“Question”部分定义了输入的问题,而“Thought”部分,从task的角度来讲就是在回答问题的过程中形成的具体步骤,譬如用户问ChatGPT如何做一道菜,那么给出的回答会涉及到做菜的一系列的步骤,这就是一个所谓“思考”的过程,在涉及具体的“Action”时,说到的是具体的工具的名称,也就是需要有一个东西来调用工具,这就是agent起到的核心作用或者说它要做的事情:

关于Action input,语言模型需要知道某个步骤的输入是什么,而Observation则指调用工具之后返回的结果,这个结果会作为new context返回给ChatGPT,“action”,“action input”和“observation”共同构成了一个反复迭代的过程(类似一个for循环),直到完成“thought”(可以看做是for循环需要满足的条件)部分给出的这样一个“thinking process”的过程,在这个过程中的一系列任务(a list of tasks)是由模型来产生的,这具有重要的意义,举例来说,譬如一个教育产品,老师给学生安排任务,不同的学生具有不同的学习能力,不同的状态,不同的学习时间安排等等,这些信息都可以作为context,不同学生面对的是同样的问题,但是加入不同的context之后,对于LLM来说,产生的步骤就可能不太一样,这就是一个“adaptive learning process”,即从原来的规则系统变成了以模型为驱动的动态调整学习的过程。这样的一个prompt示例可以看做是一个工业级的写法。

在base文件部分,主要用于生成agent,所谓“ZeroShotAgent”就是不需要提供示范:

在下面创建prompt的方法中,提供了参数“tools”,模型会根据配置中的“description_for_model”的内容来决定使用哪个工具:

LangChain提供了以模板化的方法来构建prompt:

通过参数llm和prompt构建一个chain,然后构建tools’ list,告诉模型可以调用哪些工具:

这个类基于前面设定的条件来执行,类似一个service或者server的概念:

这个类中定义了使用chain来查询信息的方法:

这里给出了如下样例,譬如调用SerpAPIWrapper方法进行信息的检索,在chain的配置中给出两个actions,一个是做搜索,一个是进行科学计算:

from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain

from langchain.chains.mrkl.base import ChainConfig

                llm = OpenAI(temperature=0)

                search = SerpAPIWrapper()

                llm_math_chain = LLMMathChain(llm=llm)

                chains = [

                    ChainConfig(

                        action_name = "Search",

                        action=search.search,

                        action_description="useful for searching"

                    ),

                    ChainConfig(

                        action_name="Calculator",

                        action=llm_math_chain.run,

                        action_description="useful for doing math"

                    )

                ]

有了这些配置后,就可以把LLM作为reasoning engine,在需要的时候调用工具进行查询,通过方法from_llm_and_tools构建了一个agent的实例:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/94344.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于java swing和mysql实现的仓库商品管理系统(源码+数据库+运行指导视频)

一、项目简介 本项目是一套基于java swing和mysql实现的仓库商品管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含:项目源码、项目文档、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经…

新SDK平台下载开源全志V853的SDK

获取SDK SDK 使用 Repo 工具管理,拉取 SDK 需要配置安装 Repo 工具。 Repo is a tool built on top of Git. Repo helps manage many Git repositories, does the uploads to revision control systems, and automates parts of the development workflow. Repo is…

若依vue打印的简单方法

像我们后端程序员做前端的话,有时候真不需要知道什么原理,直接塞就好了 我们选用基于hiprint 的vue-plugin-hiprint来打印 目的是为了实现点击某些行的数据,然后点击某个按钮直接弹出下面的打印 此链接 大佬是原创,我拿来总结梳理一下 插件进阶功能请移步: 链接 插件模板制作页…

Leetcode每日一题:1267. 统计参与通信的服务器(2023.8.24 C++)

目录 1267. 统计参与通信的服务器 题目描述: 实现代码与解析: 写法一:两次遍历 hash 原理思路: 写法二:三次遍历 原理思路: 1267. 统计参与通信的服务器 题目描述: 这里有一幅服务器分…

三维模型OBJ格式轻量化压缩并行计算处理方法浅析

三维模型OBJ格式轻量化压缩并行计算处理方法浅析 三维模型的轻量化是指通过一系列技术和算法来减小三维模型的文件大小,以提高模型在计算机中的加载、渲染和传输效率。并行计算是利用多个计算单元同时执行任务,以加速计算过程的一种技术。在三维模型的O…

基于Spring Boot的软件缺陷追踪系统的设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频: 基于Spring Boot的软件缺陷追踪系统的设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java spri…

【数据分析】统计量

1. 均值、众数描述数据的集中趋势度量,四分位差、极差描述数据的离散程度。 2. 标准差、四分位差、异众比率度量离散程度,协方差是度量相关性。 期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为: 从直观上来看&…

ppt转pdf免费的工具哪个好用?ppt在线转pdf的方法分享

在工作和学习中,将PPT文件转换为PDF格式具有重要意义。PDF文件的大小较小,适用于各种平台和设备,保持了原始文件的内容和格式,具有广泛的可读性和兼容性。那么小编就来为大家详细地说一说“ppt转pdf免费的工具哪个好用?ppt在线转…

US-DAS1、US-P2A单路及双路插头式比例放大器

US-P1、US-P2A、US-P2F插头式安装比例放大器控制不带电反馈的双路比例电磁铁的比例阀,如直动式或先导式比例方向阀的驱动控制。 工作电源24VDC标准; 兼容指令10V、4-20mA、0~10V、0~5V(电位器控制); 输出电流0~2A; …

JavaScript—面向对象、作用域

C#:从类继承 js:从对象继承 什么叫继承? 模板(类) 原型继承(实体) 有一个对象存在,构造函数设置原型为这个对象 创建出来的对象就继承与这个对象(从对象那里继承&am…

作业人员护目镜佩戴自动识别

作业人员护目镜佩戴自动识别通过pythonyolo深度学习算法模型,作业人员护目镜佩戴自动识别利用布设摄像头并结合图像算法能够实时监测作业人员是否佩戴护目镜。一旦发现未佩戴的情况立即发出警告,并及时记录异常情况。在YOLOv1提出之前,R-CNN系…

【Python Flask+Nginx】实现HTTP、WS (两步实现,简单易懂)

目录 一、创建Flask应用 二、部署Nginx 2.1 下载Nginx 2.2 修改Nginx配置文件 2.3 启动Nginx 三、测试 一、创建Flask应用 首先我写了如下一个基于Flask的Demo,该Demo包含两个接口一个是HTTP接口(http://127.0.0.1:5000)&#xff0c…

数字孪生赋能工业制造,为制造业带来新机遇与挑战

数字孪生技术是利用模拟仿真技术将实体对象数字化的技术。它基于虚拟现实、人工智能和云计算等技术,能够创建与真实物体相同的数字模型,并通过实时监测和分析手段,为制造企业提供关于该物体的全面数据,从而优化产品开发和生产过程…

springboot服务端接口外网远程调试,并实现HTTP服务监听

文章目录 前言1. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 2. 内网穿透2.1 安装配置cpolar内网穿透2.1.1 windows系统2.1.2 linux系统 2.2 创建隧道映射本地端口2.3 测试公网地址 3. 固定公网地址3.1 保留一个二级子域名3.2 配置二级子域名3.2 测试使用固定公网地址…

.NET 8 Preview 7 中的 ASP.NET Core 更新

作者:Daniel Roth 排版:Alan Wang .NET 8 Preview 7 现在已经发布,其中包括了对 ASP.NET Core 的许多重要更新。 以下是预览版本中新增功能的摘要: 服务器和中间件 防伪中间件 API 编写 最小 API 的防伪集成 Native AOT 请求委托…

NEOVIM学习笔记

GitHub - blogercn/nvim-config: A pretty epic NeoVim setup 一直使用vim,每次到了新公司都要配置半天,而且常常配置失败,很多插件过期不好用。偶然看到别人的NEO VIM,就试着用了一下,感觉还不错。 用来开发和阅读C代…

《Flink学习笔记》——第二章 Flink的安装和启动、以及应用开发和提交

​ 介绍Flink的安装、启动以及如何进行Flink程序的开发,如何运行部署Flink程序等 2.1 Flink的安装和启动 本地安装指的是单机模式 0、前期准备 java8或者java11(官方推荐11)下载Flink安装包 https://flink.apache.org/zh/downloads/hadoop&a…

网络服务第二次作业

[rootlocalhost ~]# vim /etc/httpd/conf.d/vhosts.conf <Virtualhost 192.168.101.200:80> #虚拟主机IP及端口 DocumentRoot /www/openlab #网页文件存放目录 ServerName www.openlab.com #服务器域名 </VirtualHost> …

SOPC之NIOS Ⅱ实现电机转速PID控制(调用中断函数)

通过FPGA开发板上的NIOS Ⅱ搭建电机控制的硬件平台&#xff0c;包括电机正反转、编码器的读取&#xff0c;再通过软件部分实现PID算法对电机速度进行控制&#xff0c;使其能够渐近设定的编码器目标值。 一、问题与改进 SOPC之NIOS Ⅱ实现电机转速PID控制_STATEABC的博客-CSDN…

《自动驾驶与机器人中的SLAM技术》之GNSS相关基础知识总结

简介 本篇基于对《自动驾驶与机器人中的SLAM技术》中的GNSS定位相关基础知识进行总结用于备忘 知识点整理 GNSS(全球卫星导航系统)定位原理 GNSS 通过测量自身与地球周围各卫星的距离来确定自身的位置 , 而与卫星的距离主要是通过测量时间间隔来确定的 GNSS与GPS的关系 GPS(…