python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶

【1】引言

前序已经掌握了使用cv2.circle()绘制圆形的基本操作,相关链接为:

python学opencv|读取图像(二十)使用cv2.circle()绘制圆形-CSDN博客

由于圆形本身绘制起来比较简单,因此可以自由操作的空间也就大,我们今天就尝试多一些花样,做一次进阶探索。

【2】代码探索

【2.1】同心圆

绘制同心圆的基本思路是,确认好圆心以后,逐个修改半径,然后输出图像即可。

还是以之前的代码为基础,增加for循环逐个输出圆即可。此处先给出完整代码:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块

canvas = np.ones((580, 580, 3), np.uint8) * 225  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
# 第一个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 1] = 50 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 150 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 2] = 100 * np.tanh(i + j) + 100 * np.tanh(i - j) + 50 * np.cos(j - i)  # 第三个通道值
x0=285 #圆心横坐标
y0=285 #圆心纵坐标
for i in range(1,6,1):
    canvas = cv.circle(canvas, (x0, y0), 50*i, (int(255*np.cos((np.sqrt(np.square(15-i))))), int(255*np.sin(i)), int(np.abs(i-3))^5), i) #输出同心圆

#canvas = cv.circle(canvas, (285, 285), 80, (0, 0, 255), 3)  # 第一个圆形
#canvas = cv.circle(canvas, (100, 285), 80, (0, 255, 255), -1)  # 第二个圆形
#canvas = cv.circle(canvas, (470, 285), 80, (255, 0, 0), -1)  # 第三个圆形
# canvas = cv.rectangle(canvas, (50, 30), (530, 550), (155, 120, 60), 5)  # 矩形
# canvas = cv.rectangle(canvas, (80, 80), (500, 500), (55, 160, 230), 10)  # 矩形
# canvas = cv.rectangle(canvas, (150, 150), (430, 430), (50, 120, 90), -1)  # 矩形
# canvas = cv.line(canvas, (50, 550), (550, 550), (58, 50, 150), 15)  # 线段
# canvas = cv.line(canvas, (300, 50), (300, 550), (120, 150, 25), 20)  # 线段

cv.imshow('rectangle', canvas)  # 在屏幕展示绘制圆形的效果
cv.imwrite('circle50.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

程序运行后的输出图像为:

图1 同心圆

创造同心圆的核心代码段落为:

x0=285 #圆心横坐标
y0=285 #圆心横坐标
for i in range(1,5,1):
    canvas = cv.circle(canvas, (x0, y0), 50*i, (int(255*np.cos((np.sqrt(np.square(15-i))))), int(255*np.sin(i)), int(np.abs(i-3))^5), i) #输出同心圆

首先用x0和y0确认了愿新的坐标点,然后用for循环输出5个圆形即可。

这五个圆的半径计算式为:r=50*i,i就是圆形的出现顺序;圆的颜色采用了函数的形式,不是此处重点;圆的线宽就是圆出现的顺序。

总体上,圆出现的顺序越晚,半径越大,线条越宽。

【2.2】疏密同心圆

绘制疏密同心圆的基本思路是,利用三角函数的斜率也是三角函数的原理,如果半径通过三角函数来取值,那同样的增量下,邻近半径值的差会周期性的时大时小,这样就会画出疏密同心圆。

以2π为周期,增量从0到7就可以覆盖一个周期内的所有圆。

在这个分析基础上,我们把核心代码换成:

x0=285 #圆心横坐标
y0=285 #圆心横坐标
for i in range(0,7,1):
    canvas = cv.circle(canvas, (x0, y0), np.abs(int(260*np.cos(i))), (200,180,55), 2) #输出同心圆

半径取值为np.abs(int(260*np.cos(i))),这里的np.abs()是取绝对值的意思,因为半径必须为正数。

此时获得的图形为:

图2 疏密同心圆

对应的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块

canvas = np.ones((580, 580, 3), np.uint8) * 225  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
# 第一个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 1] = 50 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 150 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 2] = 100 * np.tanh(i + j) + 100 * np.tanh(i - j) + 50 * np.cos(j - i)  # 第三个通道值
x0=285 #圆心横坐标
y0=285 #圆心横坐标
for i in range(0,7,1):
    canvas = cv.circle(canvas, (x0, y0), np.abs(int(260*np.cos(i))), (200,180,55), 2) #输出同心圆

#canvas = cv.circle(canvas, (285, 285), 80, (0, 0, 255), 3)  # 第一个圆形
#canvas = cv.circle(canvas, (100, 285), 80, (0, 255, 255), -1)  # 第二个圆形
#canvas = cv.circle(canvas, (470, 285), 80, (255, 0, 0), -1)  # 第三个圆形
# canvas = cv.rectangle(canvas, (50, 30), (530, 550), (155, 120, 60), 5)  # 矩形
# canvas = cv.rectangle(canvas, (80, 80), (500, 500), (55, 160, 230), 10)  # 矩形
# canvas = cv.rectangle(canvas, (150, 150), (430, 430), (50, 120, 90), -1)  # 矩形
# canvas = cv.line(canvas, (50, 550), (550, 550), (58, 50, 150), 15)  # 线段
# canvas = cv.line(canvas, (300, 50), (300, 550), (120, 150, 25), 20)  # 线段

cv.imshow('rectangle', canvas)  # 在屏幕展示绘制圆形的效果
cv.imwrite('circle50.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

【2.3】变化圆心

既然圆的半径可以变化,圆形自然也可以变化,继续修改核心代码:

r=160 #半径
for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), r, (200,180,55), 2) #输出同心圆

在这里,圆心坐标被更换为((i-5)*10+280, (i-5)*20+280),这几一个动态值,只有半径是恒定的160。代码运行获得的图像为:

图3 圆心变化

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块

canvas = np.ones((580, 580, 3), np.uint8) * 225  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
# 第一个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 1] = 50 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 150 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 2] = 100 * np.tanh(i + j) + 100 * np.tanh(i - j) + 50 * np.cos(j - i)  # 第三个通道值
#x0=285 #圆心横坐标
#y0=285 #圆心横坐标
r=160 #半径
for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), r, (200,180,55), 2) #输出同心圆

#canvas = cv.circle(canvas, (285, 285), 80, (0, 0, 255), 3)  # 第一个圆形
#canvas = cv.circle(canvas, (100, 285), 80, (0, 255, 255), -1)  # 第二个圆形
#canvas = cv.circle(canvas, (470, 285), 80, (255, 0, 0), -1)  # 第三个圆形
# canvas = cv.rectangle(canvas, (50, 30), (530, 550), (155, 120, 60), 5)  # 矩形
# canvas = cv.rectangle(canvas, (80, 80), (500, 500), (55, 160, 230), 10)  # 矩形
# canvas = cv.rectangle(canvas, (150, 150), (430, 430), (50, 120, 90), -1)  # 矩形
# canvas = cv.line(canvas, (50, 550), (550, 550), (58, 50, 150), 15)  # 线段
# canvas = cv.line(canvas, (300, 50), (300, 550), (120, 150, 25), 20)  # 线段

cv.imshow('rectangle', canvas)  # 在屏幕展示绘制圆形的效果
cv.imwrite('circle50.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

【2.4】变化圆半径

在圆心变化的基础上,圆的半径可以变化,这样就会出现变化圆。

继续增添代码:

for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), int(200*np.abs(np.sin(i))), (200,180,55), 2) #输出同心圆

在这里,半径值被修改为:int(200*np.abs(np.sin(i))),这是一个动态值。

运行后的图像为:

图4 变化圆

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块

canvas = np.ones((580, 580, 3), np.uint8) * 225  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
# 第一个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 1] = 50 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 150 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 2] = 100 * np.tanh(i + j) + 100 * np.tanh(i - j) + 50 * np.cos(j - i)  # 第三个通道值
#x0=285 #圆心横坐标
#y0=285 #圆心横坐标
#r=160 #半径
for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), int(200*np.abs(np.sin(i))), (200,180,55), 2) #输出同心圆

#canvas = cv.circle(canvas, (285, 285), 80, (0, 0, 255), 3)  # 第一个圆形
#canvas = cv.circle(canvas, (100, 285), 80, (0, 255, 255), -1)  # 第二个圆形
#canvas = cv.circle(canvas, (470, 285), 80, (255, 0, 0), -1)  # 第三个圆形
# canvas = cv.rectangle(canvas, (50, 30), (530, 550), (155, 120, 60), 5)  # 矩形
# canvas = cv.rectangle(canvas, (80, 80), (500, 500), (55, 160, 230), 10)  # 矩形
# canvas = cv.rectangle(canvas, (150, 150), (430, 430), (50, 120, 90), -1)  # 矩形
# canvas = cv.line(canvas, (50, 550), (550, 550), (58, 50, 150), 15)  # 线段
# canvas = cv.line(canvas, (300, 50), (300, 550), (120, 150, 25), 20)  # 线段

cv.imshow('rectangle', canvas)  # 在屏幕展示绘制圆形的效果
cv.imwrite('circle50.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

【2.5】变化圆半径和颜色

在获得变化圆半径的基础上,继续修改代码,让圆的颜色变化:

for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), int(200*np.abs(np.sin(i))), (int(abs(255*np.sin(i))),int(abs(255*np.cos(i))),int(255*np.tanh(i))), 2) #输出圆

在这里,颜色值被修改为:(int(abs(255*np.sin(i))),int(abs(255*np.cos(i))),int(255*np.tanh(i))),这是一个动态值。

运行后的图像为:

图5 变化圆半径和颜色

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块

canvas = np.ones((580, 580, 3), np.uint8) * 225  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
# 第一个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 1] = 50 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 150 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
#for i in range(0, 580, 1):
    #for j in range(0, 580, 1):
        #canvas[i, j, 2] = 100 * np.tanh(i + j) + 100 * np.tanh(i - j) + 50 * np.cos(j - i)  # 第三个通道值
#x0=285 #圆心横坐标
#y0=285 #圆心横坐标
#r=160 #半径
for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), int(200*np.abs(np.sin(i))), (int(abs(255*np.sin(i))),int(abs(255*np.cos(i))),int(255*np.tanh(i))), 2) #输出同心圆

#canvas = cv.circle(canvas, (285, 285), 80, (0, 0, 255), 3)  # 第一个圆形
#canvas = cv.circle(canvas, (100, 285), 80, (0, 255, 255), -1)  # 第二个圆形
#canvas = cv.circle(canvas, (470, 285), 80, (255, 0, 0), -1)  # 第三个圆形
# canvas = cv.rectangle(canvas, (50, 30), (530, 550), (155, 120, 60), 5)  # 矩形
# canvas = cv.rectangle(canvas, (80, 80), (500, 500), (55, 160, 230), 10)  # 矩形
# canvas = cv.rectangle(canvas, (150, 150), (430, 430), (50, 120, 90), -1)  # 矩形
# canvas = cv.line(canvas, (50, 550), (550, 550), (58, 50, 150), 15)  # 线段
# canvas = cv.line(canvas, (300, 50), (300, 550), (120, 150, 25), 20)  # 线段

cv.imshow('rectangle', canvas)  # 在屏幕展示绘制圆形的效果
cv.imwrite('circle50.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

【2.6】变化背景

然后我们修改背景BGR值,获得颜色变化的背景画布:

# 第一个通道值
for i in range(0, 580, 1):
    for j in range(0, 580, 1):
        canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
for i in range(0, 580, 1):
    for j in range(0, 580, 1):
        canvas[i, j, 1] = 150 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 50 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
for i in range(0, 580, 1):
    for j in range(0, 580, 1):
        canvas[i, j, 2] = 50 * np.tanh(i + j) + 80 * np.tanh(i - j) + 120 * np.cos(j - i)  # 第三个通道值

此时获得的图像为:

图6  变化圆和画布

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv模块

canvas = np.ones((580, 580, 3), np.uint8) * 125  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
# 第一个通道值
for i in range(0, 580, 1):
    for j in range(0, 580, 1):
        canvas[i, j, 0] = 0.2 * (i + j)  # 第一个通道值

# 第二个通道值
for i in range(0, 580, 1):
    for j in range(0, 580, 1):
        canvas[i, j, 1] = 150 * np.cos(i ^ j) + 55 * np.sin(j ^ i) + 50 * np.sin(j - i)  # 第二个通道值

# 第三个通道值
for i in range(0, 580, 1):
    for j in range(0, 580, 1):
        canvas[i, j, 2] = 50 * np.tanh(i + j) + 80 * np.tanh(i - j) + 120 * np.cos(j - i)  # 第三个通道值
#x0=285 #圆心横坐标
#y0=285 #圆心横坐标
#r=160 #半径
for i in range(0,10,1):
    canvas = cv.circle(canvas, ((i-5)*10+280, (i-5)*20+280), int(200*np.abs(np.sin(i))), (int(abs(255*np.sin(i))),int(abs(255*np.cos(i))),int(255*np.tanh(i))), 2) #输出同心圆

#canvas = cv.circle(canvas, (285, 285), 80, (0, 0, 255), 3)  # 第一个圆形
#canvas = cv.circle(canvas, (100, 285), 80, (0, 255, 255), -1)  # 第二个圆形
#canvas = cv.circle(canvas, (470, 285), 80, (255, 0, 0), -1)  # 第三个圆形
# canvas = cv.rectangle(canvas, (50, 30), (530, 550), (155, 120, 60), 5)  # 矩形
# canvas = cv.rectangle(canvas, (80, 80), (500, 500), (55, 160, 230), 10)  # 矩形
# canvas = cv.rectangle(canvas, (150, 150), (430, 430), (50, 120, 90), -1)  # 矩形
# canvas = cv.line(canvas, (50, 550), (550, 550), (58, 50, 150), 15)  # 线段
# canvas = cv.line(canvas, (300, 50), (300, 550), (120, 150, 25), 20)  # 线段

cv.imshow('rectangle', canvas)  # 在屏幕展示绘制圆形的效果
cv.imwrite('circle50.png', canvas)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

【3】总结

掌握了python+opencv灵活绘制圆形的技巧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/942312.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大数据-256 离线数仓 - Atlas 数据仓库元数据管理 正式安装 启动服务访问 Hive血缘关系导入

点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! 目前开始更新 MyBatis,一起深入浅出! 目前已经更新到了: Hadoop&#xff0…

保险科技“数智化+”赋能险企高质量发展

文 / 太保科技有限公司人工智能服务事业群资深产品经理 娄昕盛 中国太平洋保险(集团)股份有限公司数智研究院人工智能首席专家 徐国强 中国太平洋保险(集团)股份有限公司数智研究院执行院长 王磊 近年来,保险科技正处在“数字化+”向“数智化+”发展的过渡阶段,…

AI科研助手开发总结:向量与数据权应用(二)

一、前言 继上篇文章:AI科研助手开发总结:向量与数据权限的应用(一) 本章根据向量库内存储数据及权限,向量库统一维护和管理数据权限方案讨论。 二、方案分析-基于向量Fields 2.1 思路 结合橙语AI科研助手的业务场…

数字逻辑(七)——逻辑运算中三种基本运算及其符合运算

目录 1 三种基本逻辑运算 1.1 与(AND) 1.2 或(OR) 1.3 非(NOT) 2 由基本门电路组成的其他门电路 2.1 异或 2.2. 同或 2.3 与非 2.4 或非 用于分析数字电路中逻辑功能的数学方法——逻辑代数&#…

分布式事务的解决方案(欢迎讨论~)

目录 背景 CAP定理 BASE理论 场景重现​编辑 分布式事务常见的解决分案 1.二段提交 2.三段提交 3.TCC模式 4.分布式补偿事务(Saga) 5.Seata分布式框架-XA模式 6.Seata分布式框架-AT模式 XA AT TCC SAGA 的对比 背景 首先必须介绍一下分布式中…

汽车IVI中控开发入门及进阶(43):NanoVG

NanoVG:基于OpenGL的轻量级抗锯齿2D矢量绘图库 NanoVG是一个跨平台、基于OpenGL的矢量图形渲染库。它非常轻量级,用C语言实现,代码不到5000行,非常精简地实现了一套HTML5 Canvas API,做为一个实用而有趣的工具集,用来构建可伸缩的用户界面和可视化效果。NanoVG-Library为…

从0到1实现一个RS蓝图系统-概念提出技术栈选型

请不要自我设限,真正好的人生态度,是现在就做,不等、不靠、不懒惰。 ——小野《改变力》 一、什么是蓝图? 蓝图(BluePrint) 是Epic Games 针对虚幻4引擎开发的可视化脚本语言。当你使用蓝图的时候,其实就是在编写代码…

【C++ 类和对象 基础篇】—— 抽象思维的巅峰舞者,演绎代码的深邃华尔兹

C学习笔记: C 进阶之路__Zwy的博客-CSDN博客 各位于晏,亦菲们,请点赞关注! 我的个人主页: _Zwy-CSDN博客 目录 1、类 1.1、类的定义 1.2、访问限定符 1.2.1、public 1.2.2、private 1.2.3、protected 1.3、…

(高可用版本)Kubeadm+Containerd+keepalived部署高可用k8s(v1.28.2)集群

KubeadmContainerdkeepalived部署高可用k8s(v1.28.2)集群 一.环境准备,二.容器运行时Containerd安装请参照前文。KubeadmContainerd部署k8s(v1.28.2)集群(非高可用版)-CSDN博客 文章目录 KubeadmContainerdkeepalived部署高可用k8s(v1.28.2)集…

联合目标检测与图像分类提升数据不平衡场景下的准确率

联合目标检测与图像分类提升数据不平衡场景下的准确率 在一些数据不平衡的场景下,使用单一的目标检测模型很难达到99%的准确率。为了优化这一问题,适当将其拆解为目标检测模型和图像分类模型的组合,可以更有效地控制最终效果,尤其…

C++之红黑树模拟实现

目录 红黑树的概念 红黑树的性质 红黑树的查找效率 红黑树的实现 红黑树的定义 红黑树节点的插入 红黑树的平衡调整 判断红黑树是否平衡 红黑树整体代码 测试代码 上期我们学习了AVL树的模拟实现,在此基础上,我们本期将学习另一个数据结构-…

机器学习常用术语

目录 概要 机器学习常用术语 1、模型 2、数据集 3、样本与特征 4、向量 5、矩阵 6、假设函数与损失函数 7、拟合、过拟合与欠拟合 8、激活函数(Activation Function) 9、反向传播(Backpropagation) 10、基线(Baseline) 11、批量(Batch) 12、批量大小(Batch Size)…

nest 学习3

学习小册(nest通关秘籍) 邮箱验证码登陆 流程图: 邮箱作为key,生成随机验证码,然后放到redis中。调用邮箱api发送邮箱。 前端获取到code后,将验证码输入传给后端,后端根据邮箱取出redis数据,比对验证码&…

原点安全再次入选信通院 2024 大数据“星河”案例

近日,中国信息通信研究院和中国通信标准化协会大数据技术标准推进委员会(CCSA TC601)共同组织开展的 2024 大数据“星河(Galaxy)”案例征集活动结果正式公布。由工银瑞信基金管理有限公司、北京原点数安科技有限公司联…

RabbitMQ 的7种工作模式

RabbitMQ 共提供了7种⼯作模式,进⾏消息传递,. 官⽅⽂档:RabbitMQ Tutorials | RabbitMQ 1.Simple(简单模式) P:⽣产者,也就是要发送消息的程序 C:消费者,消息的接收者 Queue:消息队列,图中⻩⾊背景部分.类似⼀个邮箱,可以缓存消息;⽣产者向其中投递消息,消费者从其中取出消息…

Restaurants WebAPI(四)——Identity

文章目录 项目地址一、Authentication(身份认证)1.1 配置环境(解决类库包无法引用)1.2 使用Authentication控制Controller的访问1.3 获取User的Context1.3.1 在Application下创建User文件夹1. 创建User.cs record类封装角色信息2. 创建UserContext.cs提供…

010 Qt_输入类控件(LineEdit、TextEdit、ComboBox、SpinBox、DateTimeEdit、Dial、Slider)

文章目录 前言一、QLineEdit1.简介2.常见属性及说明3.重要信号及说明4.示例一:用户登录界面5.示例二:验证两次输入的密码是否一致显示密码 二、TextEdit1.简介2.常见属性及说明3.重要信号及说明4.示例一:获取多行输入框的内容5.示例二&#x…

Vue3:uv-upload图片上传

效果图&#xff1a; 参考文档&#xff1a; Upload 上传 | 我的资料管理-uv-ui 是全面兼容vue32、nvue、app、h5、小程序等多端的uni-app生态框架 (uvui.cn) 代码&#xff1a; <view class"greenBtn_zw2" click"handleAddGroup">添加班级群</vie…

通过Docker Compose来实现项目可以指定读取不同环境的yml包

通过Docker Compose来实现项目可以指定读取不同环境的yml包 1. 配置文件2. 启动命令 切换不同环境注意挂载的文件权限要777 1. 配置文件 version: 3.8 services:docker-test:image: openjdk:8-jdk-alpineports:- "${APP_PORT}:${CONTAINER_PORT}"volumes:- "${J…

华为实训课笔记 2024 1223-1224

华为实训 12/2312/24 12/23 [Huawei]stp enable --开启STP display stp brief --查询STP MSTID Port Role STP State Protection 实例ID 端口 端口角色 端口状态 是否开启保护[Huawei]display stp vlan xxxx --查询制定vlan的生成树计算结…