工地扬尘自动监测识别算法

工地扬尘自动监测识别系统通过yolov7+python网络模型深度学习算法模型,扬尘自动监测识别算法能够全天候、全方位地观测扬尘情况。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。

新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。


 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/94034.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring框架

一.简介 Spring 是 2003 年兴起,通过使用IOC 和 AOP 组成的轻量级的为解决企业级开发的Java开发框架 官网:Spring | Home 特点: 1.轻量级:资源jar包少,运行时框架占用资源少,效率更高 2.IOC(Inversion of Control),由Spring容器来对对象实行管理 3.AOP(面相切面的编程)是…

跳跃游戏 II【贪心算法】

跳跃游戏 II class Solution {public int jump(int[] nums) {int cur 0;//当前最大覆盖路径int next 0;//下一步的最大覆盖路径int res 0;//存放结果&#xff0c;到达终点时最少的跳跃步数for (int i 0; i < nums.length; i) {//遍历数组&#xff0c;以给出数组以一个…

CSS学习笔记01

CSS笔记01 什么是CSS CSS&#xff08;Cascading Style Sheets &#xff09;&#xff1a;层叠样式表&#xff0c;也可以叫做级联样式表&#xff0c;是一种用来表现 HTML 或 XML 等文件样式的计算机语言。字体&#xff0c;颜色&#xff0c;边距&#xff0c;高度&#xff0c;宽度…

兼容AD210 车规级高精度隔离放大器:ISO EM210

车规级高精度隔离放大器&#xff1a;ISO EM210 Pin-Pin兼容AD210的低成本,小体积DIP标准38Pin金属外壳封装模块&#xff0c;能有效屏蔽现场EMC空间干扰。功能设计全面&#xff0c;采用非固定增益方式&#xff0c;输入信号经过输入端的前置放大器&#xff08;增益为1-100&#x…

设计模式之命令模式(Command)的C++实现

1、命令模式的提出 在软件开发过程中&#xff0c;“行为请求者”和“行为实现者”通常呈现一种“紧耦合”&#xff0c;如果行为的实现经常变化&#xff0c;则不利于代码的维护。命令模式可以将行为的请求者和行为的实现者进行解耦。具体流程是将行为请求者封装成一个对象&…

AODV代码实现详解——原理与源码分析(一)

首先来几个标准参考&#xff1a; RFC 3561 RFC 3561 中文翻译 一个博客 挺好的另一个博客 事件&#xff1f; 字段长度&#xff1f; 事件驱动 各种定时器 状态转移图&#xff1f; AODV协议 基本概念 AODV&#xff08;Ad hoc On-Demand Distance Vector&#xff09;是一种基于…

FusionAD:用于自动驾驶预测和规划任务的多模态融合

论文背景 自动驾驶&#xff08;AD&#xff09;任务通常分为感知、预测和规划。在传统范式中&#xff0c;AD中的每个学习模块分别使用自己的主干&#xff0c;独立地学习任务。 以前&#xff0c;基于端到端学习的方法通常基于透视视图相机和激光雷达信息直接输出控制命令或轨迹…

【CSS】轮播图案例开发 ( 基本设置 | 子绝父相 | 浏览器水平居中 | 圆角设置 | 绝对定位居中设置 )

代码示例 : <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Banner 轮播</title><style>/* 取消浏览器或者其它标签的默认的内外边距 */* {margin: 0;padding: 0;}/* 取消列表样式 主要是…

特殊的矩阵与特殊的矩阵关系———实对称、正定、对角、零矩阵

一、特殊的矩阵 1、实对称矩阵 定义&#xff1a;都是实数&#xff0c;且 性质&#xff1a; &#xff08;1&#xff09;可以用特征值来求A的大小 &#xff08;2&#xff09;可以得到A的秩 &#xff08;3&#xff09;必定可以相似对角化 运用&#xff1a; 与实对称矩阵A合同的矩…

C#,《小白学程序》第二课:数组与排序

1 文本格式 /// <summary> /// 《小白学程序》第二课&#xff1a;数组与排序 /// </summary> /// <param name"sender"></param> /// <param name"e"></param> private void button2_Click(object sender, EventArgs …

如何选择合适的损失函数

目录 如何选择合适的损失函数 1、均方误差&#xff0c;二次损失&#xff0c;L2损失&#xff08;Mean Square Error, Quadratic Loss, L2 Loss&#xff09; 2、平均绝对误差&#xff0c;L1损失&#xff08;Mean Absolute Error, L1 Loss&#xff09; 3、MSE vs MAE &#xff…

数据增强:提高机器学习性能的有效技巧

文章目录 数据增强的原理常用的数据增强技术图像数据增强文本数据增强音频数据增强 数据增强的代码示例拓展应用与挑战结论 &#x1f389;欢迎来到AIGC人工智能专栏~数据增强&#xff1a;提高机器学习性能的有效技巧 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&a…

Rabbitmq的Federation Exchange

(broker 北京 ) &#xff0c; (broker 深圳 ) 彼此之间相距甚远&#xff0c;网络延迟是一个不得不面对的问题。有一个在北京的业务(Client 北京 ) 需要连接 (broker 北京 ) &#xff0c;向其中的交换器 exchangeA 发送消息&#xff0c;此时的网络延迟很小&#xff0c;(C…

【网络基础实战之路】基于三层架构实现一个企业内网搭建的实战详解

系列文章传送门&#xff1a; 【网络基础实战之路】设计网络划分的实战详解 【网络基础实战之路】一文弄懂TCP的三次握手与四次断开 【网络基础实战之路】基于MGRE多点协议的实战详解 【网络基础实战之路】基于OSPF协议建立两个MGRE网络的实验详解 【网络基础实战之路】基于…

推荐前 6 名 JavaScript 和 HTML5 游戏引擎

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建3D应用场景 事实是&#xff0c;自从引入JavaScript WebGL API以来&#xff0c;现代浏览器具有直观的功能&#xff0c;使它们能够渲染更复杂和复杂的2D和3D图形&#xff0c;而无需依赖第三方插件。 你可以用纯粹的JavaScript开…

c++冒泡排序的动画演示+程序实现

冒泡排序&#xff08;Bubble Sort&#xff09;是一种计算机科学领域的较简单的排序算法。 它重复地走访过要排序的元素列&#xff0c;依次比较两个相邻的元素&#xff0c;如果顺序&#xff08;如从大到小、首字母从Z到A&#xff09;错误就把他们交换过来。走访元素的工作是重复…

小白到运维工程师自学之路 第七十九集 (基于Jenkins自动打包并部署Tomcat环境)2

紧接上文 4、新建Maven项目 clean package -Dmaven.test.skiptrue 用于构建项目并跳过执行测试 拉到最后选择构建后操作 SSH server webExec command scp 192.168.77.18:/root/.jenkins/workspace/probe/psi-probe-web/target/probe.war /usr/local/tomcat/webapps/ /usr/loca…

代码随想录算法训练营第五十天|LeetCode 739,496

目录 LeetCode 739.每日温度 LeetCode 496.下一个更大元素&#xff01; LeetCode 739.每日温度 文章讲解&#xff1a;代码随想录 力扣题目&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 代码如下&#xff08;Java&#xff09;&#xf…

W6100-EVB-PICO进行UDP组播数据回环测试(九)

前言 上一章我们用我们的开发板作为UDP客户端连接服务器进行数据回环测试&#xff0c;那么本章我们进行UDP组播数据回环测试。 什么是UDP组播&#xff1f; 组播是主机间一对多的通讯模式&#xff0c; 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。组播源将…

ubuntu22安装和部署Kettle8.2

前提 kettle是纯java编写的etl开源工具&#xff0c;目前kettle7和kettle8都需要java8或者以上才能正常运行。所以运行kettle前先检查java环境是否正确配置&#xff0c;java版本是否是8或者以上。 kettle安装 1、创建kettle目录&#xff0c;并将kettle的zip包解压到kettle目…