机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库详解


引言:机器学习模型的“黑箱”困境

 

机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决策的呢?

作为一名Python爱好者,我们自然希望能够了解模型背后的原理。好消息是,SHAPLIME这两个库能帮助我们! 它们可以帮助我们揭示模型的内部结构,让我们能够更好地理解和优化模型。


一:SHAP值到底是什么?

SHAP(SHapley Additive exPlanations)是一种解释机器学习模型的方法,它基于博弈论中的Shapley值。Shapley值的核心思想是给每个特征分配一个贡献值,用以表示该特征对预测结果的影响程度。

1.1 SHAP值的计算方法

首先,我们需要安装shap库:

!pip install shap

假设我们已经用Scikit-Learn训练好了一个模型model。为了计算SHAP值,我们需要先初始化一个KernelExplainer对象:

import shap

explainer = shap.KernelExplainer(model.predict, X_train)

然后就可以用shap_values方法计算每个特征的SHAP值了:

shap_values = explainer.shap_values(X_test)

这样,我们就得到了每个特征对每个预测样本的贡献值。🚀

1.2 用SHAP值分析模型

SHAP库提供了一些可视化方法,帮助我们更直观地分析模型。例如,我们可以用summary_plot方法来绘制SHAP值的总体情况:

shap.summary_plot(shap_values, X_test)

这张图展示了每个特征的SHAP值随着特征值的变化。从图中我们可以看出,不同特征对预测结果的影响程度有很大差异。

二:LIME如何揭示模型局部特性?

LIME(Local Interpretable Model-Agnostic Explanations)则是另一种解释机器学习模型的方法。它的主要思想是在每个预测样本周围建立一个简单的线性模型,从而帮助我们理解模型在局部的行为。

2.1 使用LIME分析模型

首先,我们需要安装lime库:

!pip install lime

假设我们已经用Scikit-Learn训练好了一个模型model。为了使用LIME,我们需要先创建一个LimeTabularExplainer对象:

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['prediction'], verbose=True)

然后我们可以为某个预测样本生成LIME解释:

i = 42  # 随便选一个样本
exp = explainer.explain_instance(X_test.values[i], model.predict_proba)

最后,我们可以用show_in_notebook方法将LIME解释可视化:

exp.show_in_notebook()

这样我们就可以看到一个简单的线性模型,展示了各个特征对预测结果的贡献。

2.2 LIME的局限性

虽然LIME能够帮助我们理解模型在局部的行为,但它也有一些局限性。例如,LIME依赖于一个简单的线性模型,可能无法很好地捕捉到复杂模型的特性。

三:SHAP与LIME的比较

既然我们已经了解了SHAP和LIME这两个库,那么自然会产生一个疑问:它们之间有什么区别,该如何选择呢?

3.1 二者的异同

首先总结一下它们的相似之处:

  1. 都能帮助我们解释机器学习模型;

  2. 都可以为每个特征分配一个贡献值;

  3. 都支持Scikit-Learn中的模型。

不同之处:

  1. SHAP基于Shapley值,具有一定的理论基础;

  2. LIME关注局部特性,用简单模型解释复杂模型;

  3. SHAP可以捕捉到特征间的相互作用,而LIME不行。

3.2 如何选择?

虽然SHAP和LIME都有各自的优缺点,但总体来说,SHAP更具有理论基础,而且能捕捉到特征间的相互作用。因此,在大多数情况下,我们推荐使用SHAP库。但如果您对局部特性更感兴趣,那么LIME也是一个不错的选择。

技术总结

通过这些方法,我们可以更好地理解模型的内部结构,进而优化模型,提高预测准确率。最后,欢迎在评论区留言分享你的见解,告诉我们你是如何运用这些知识解决实际问题的!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93936.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙是一个怎么样的操作系统,真的是安卓套壳吗?

从鸿蒙项目正式推出以来,就一直有各自声音,有看好的,认为鸿蒙的出现将会成为一个智能终端设备操作系统的框架和平台,促进万物互联产业的繁荣发展;也有的人在唱衰,觉得鸿蒙发展不起来,甚至认为鸿…

【计算机基础】一文搞清楚什么是线程/进程/协程

👉博主介绍: 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO 专家博主 ⛪️ 个人社区&#x…

3d Max因卡顿未保存?有什么保护文件和恢复操作呢?

大家在使用3d Max进行建模、渲染和动画制作的过程中,由于各种原因导致软件卡顿或崩溃是很常见的情况。 当卡顿发生时,如果之前的工作没有及时保存,可能会导致数据的丢失和时间的浪费。 一、先来看看保护文件 1、自动保存设置 3d Max提供了自…

机器学习中XGBoost算法调参技巧

本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。 对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你…

C++——引用

引用的概念 引用不是新定义一个变量,而是给已存在的变量取一个别名,编译器不会因为引用变量而开辟内存空间,它和它引用的变量公用同一块空间。 相当于是给被引用的变量取了一个小名,但是相当于是同一个变量。 类型& 引用变…

ES 7.6 - APi基础操作篇

ES7.6-APi基础操作篇 前言相关知识索引相关创建索引查询索引查询所有索引删除索引关闭与打开索引关闭索引打开索引 冻结与解冻索引冻结索引解冻索引 映射相关创建映射查看映射新增字段映射 文档相关(CURD)新增文档根据ID查询修改文档全量覆盖根据ID选择性修改根据条件批量更新 …

手写数字识别之网络结构

目录 手写数字识别之网络结构 数据处理 经典的全连接神经网络 卷积神经网络 手写数字识别之网络结构 无论是牛顿第二定律任务,还是房价预测任务,输入特征和输出预测值之间的关系均可以使用“直线”刻画(使用线性方程来表达&#xff09…

【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程

前情回顾:【IMX6ULL驱动开发学习】09.Linux之I2C框架简介和驱动程序模板_阿龙还在写代码的博客-CSDN博客 目录 一、修改设备树(设备树用来指定引脚资源) 二、编写驱动 2.1 i2c_drv_read 2.2 i2c_drv_write 2.3 完整驱动程序 三、上机测…

Spring 与【MyBatis 】和【 pageHelper分页插件 】整合

目录 一、Spring整合MyBatis 1. 导入pom依赖 2. 利用mybatis逆向工程生成模型层层代码 3. 编写配置文件 4. 注解式开发 5. 编写Junit测试类 二、AOP整合pageHelper分页插件 1. 创建一个AOP切面 2. Around("execution(* *..*xxx.*xxx(..))") 表达式解析 3. 编…

Visual Studio 2022的MFC框架——WinMain函数

我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Visual Studio 2022下开发工具的MFC框架知识。 大家还记得创建Win32应用程序是怎么弄的吗? Win32应用程序的建立到运行是有一个个关系分明的步骤的: 1.进入W…

【面试经典150题】删除有序数组中的重复项-JavaScript版

题目链接 思路1&#xff1a;使用set。 /*** param {number[]} nums* return {number}*/ var removeDuplicates function(nums) {const uniqueSetnew Set();for(let i0;i<nums.length;i){uniqueSet.add(nums[i]);}const uniqueArrayArray.from(uniqueSet);nums.length0;nu…

【LeetCode75】第三十五题 统计二叉树中好节点的数目

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们一棵二叉树&#xff0c;让我们统计这棵二叉树中好节点的数目。 那么什么是好节点&#xff0c;题目中给出定义&#xff0c;从根节点…

浅谈 Linux 下 vim 的使用

Vim 是从 vi 发展出来的一个文本编辑器&#xff0c;其代码补全、编译及错误跳转等方便编程的功能特别丰富&#xff0c;在程序员中被广泛使用。 Vi 是老式的字处理器&#xff0c;功能虽然已经很齐全了&#xff0c;但还有可以进步的地方。Vim 可以说是程序开发者的一项很好用的工…

门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据

环境&#xff1a; ivms-4200 v3.10.0.6_c 问题描述&#xff1a; 门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据&#xff0c;旧电脑记住密码&#xff0c;忘了密码和密保了 解决方案&#xff1a; 1.前往海康官网下载4200客户端&#xff0c;在新电脑上安装 …

平衡二叉树及其应用详解

平衡二叉树 定义与性质 平衡二叉树&#xff08;Balanced Binary Tree&#xff09;是计算机科学中的一种数据结构&#xff0c;它是二叉排序树的一种特殊情况。 平衡二叉树满足以下性质&#xff1a; 左子树和右子树的高度差不超过 1。也就是说&#xff0c;对于任意节点&#…

echarts 甘特图一组显示多组数据

<template><el-button type"primary" click"addlin">添加线</el-button><el-button type"success" click"addArea">添加区域</el-button><div ref"echart" id"echart" class&qu…

18-使用钩子函数判断用户登录权限-登录前缀

钩子函数的两种应用: (1). 应用在app上 before_first_request before_request after_request teardown_request (2). 应用在蓝图上 before_app_first_request #只会在第一次请求执行,往后就不执行, (待定,此属性没调试通过) before_app_request # 每次请求都会执行一次(重点…

计网-All

路由器的功能与路由表的查看_路由器路由表_傻傻小猪哈哈的博客-CSDN博客路由基础-直连路由、静态路由与动态路由的概念_MikeVane-bb的博客-CSDN博客路由器的功能与路由表的查看_路由器路由表_傻傻小猪哈哈的博客-CSDN博客 直连路由就是路由器直接连了一个网段&#xff0c;他就…

【C++ 学习 ⑱】- 多态(上)

目录 一、多态的概念和虚函数 1.1 - 用基类指针指向派生类对象 1.2 - 虚函数和虚函数的重写 1.3 - 多态构成的条件 1.4 - 多态的应用场景 二、协变和如何析构派生类对象 2.1 - 协变 2.2 - 如何析构派生类对象 三、C11 的 override 和 final 关键字 一、多态的概念和虚…

微信扫码跳转微信小程序

一:首先声明为什么需要这样做 项目中需要在后台管理页面进行扫码支付,其他人弄了微信小程序支付,所以就需要挑战小程序进行支付,在跳转的时候需要参数例如订单编号等 二:跳转小程序的方法有多种 接口调用凭证 | 微信开放文档 具体可以参考微信开放文档 1.获取scheme码 按照文…