【容器】k8s学习笔记原理详解(十万字超详细)

Pod详解

Pod介绍

Pod结构

实打实每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:

  • 用户程序所在的容器,数量可多可少
  • Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:
    • 可以以它为依据,评估整个Pod的健康状态
    • 可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信

这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,我们当前环境用的是Flannel

Pod定义

下面是Pod的资源清单:

apiVersion: v1     #必选,版本号,例如v1
kind: Pod         #必选,资源类型,例如 Pod
metadata:         #必选,元数据
  name: string     #必选,Pod名称
  namespace: string  #Pod所属的命名空间,默认为"default"
  labels:           #自定义标签列表
    - name: string                 
spec:  #必选,Pod中容器的详细定义
  containers:  #必选,Pod中容器列表
  - name: string   #必选,容器名称
    image: string  #必选,容器的镜像名称
    imagePullPolicy: [ Always|Never|IfNotPresent ]  #获取镜像的策略 
    command: [string]   #容器的启动命令列表,如不指定,使用打包时使用的启动命令
    args: [string]      #容器的启动命令参数列表
    workingDir: string  #容器的工作目录
    volumeMounts:       #挂载到容器内部的存储卷配置
    - name: string      #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名
      mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符
      readOnly: boolean #是否为只读模式
    ports: #需要暴露的端口库号列表
    - name: string        #端口的名称
      containerPort: int  #容器需要监听的端口号
      hostPort: int       #容器所在主机需要监听的端口号,默认与Container相同
      protocol: string    #端口协议,支持TCP和UDP,默认TCP
    env:   #容器运行前需设置的环境变量列表
    - name: string  #环境变量名称
      value: string #环境变量的值
    resources: #资源限制和请求的设置
      limits:  #资源限制的设置
        cpu: string     #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数
        memory: string  #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数
      requests: #资源请求的设置
        cpu: string    #Cpu请求,容器启动的初始可用数量
        memory: string #内存请求,容器启动的初始可用数量
    lifecycle: #生命周期钩子
        postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启
        preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止
    livenessProbe:  #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器
      exec:         #对Pod容器内检查方式设置为exec方式
        command: [string]  #exec方式需要制定的命令或脚本
      httpGet:       #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、port
        path: string
        port: number
        host: string
        scheme: string
        HttpHeaders:
        - name: string
          value: string
      tcpSocket:     #对Pod内个容器健康检查方式设置为tcpSocket方式
         port: number
       initialDelaySeconds: 0       #容器启动完成后首次探测的时间,单位为秒
       timeoutSeconds: 0          #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒
       periodSeconds: 0           #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次
       successThreshold: 0
       failureThreshold: 0
       securityContext:
         privileged: false
  restartPolicy: [Always | Never | OnFailure]  #Pod的重启策略
  nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上
  nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上
  imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定
  - name: string
  hostNetwork: false   #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
  volumes:   #在该pod上定义共享存储卷列表
  - name: string    #共享存储卷名称 (volumes类型有很多种)
    emptyDir: {}       #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值
    hostPath: string   #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录
      path: string                #Pod所在宿主机的目录,将被用于同期中mount的目录
    secret:          #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部
      scretname: string  
      items:     
      - key: string
        path: string
    configMap:         #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部
      name: string
      items:
      - key: string
        path: string
#小提示:
#   在这里,可通过一个命令来查看每种资源的可配置项
#   kubectl explain 资源类型         查看某种资源可以配置的一级属性
#   kubectl explain 资源类型.属性     查看属性的子属性
[root@k8s-master01 ~]# kubectl explain pod
KIND:     Pod
VERSION:  v1
FIELDS:
   apiVersion   <string>
   kind <string>
   metadata     <Object>
   spec <Object>
   status       <Object>

[root@k8s-master01 ~]# kubectl explain pod.metadata
KIND:     Pod
VERSION:  v1
RESOURCE: metadata <Object>
FIELDS:
   annotations  <map[string]string>
   clusterName  <string>
   creationTimestamp    <string>
   deletionGracePeriodSeconds   <integer>
   deletionTimestamp    <string>
   finalizers   <[]string>
   generateName <string>
   generation   <integer>
   labels       <map[string]string>
   managedFields        <[]Object>
   name <string>
   namespace    <string>
   ownerReferences      <[]Object>
   resourceVersion      <string>
   selfLink     <string>
   uid  <string>

Pod配置

本小节主要来研究pod.spec.containers属性,这也是pod配置中最为关键的一项配置。

[root@k8s-master01 ~]# kubectl explain pod.spec.containers
KIND:     Pod
VERSION:  v1
RESOURCE: containers <[]Object>   # 数组,代表可以有多个容器
FIELDS:
   name  <string>     # 容器名称
   image <string>     # 容器需要的镜像地址
   imagePullPolicy  <string> # 镜像拉取策略 
   command  <[]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令
   args     <[]string> # 容器的启动命令需要的参数列表
   env      <[]Object> # 容器环境变量的配置
   ports    <[]Object>     # 容器需要暴露的端口号列表
   resources <Object>      # 资源限制和资源请求的设置

基本配置

创建pod-base.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-base
  namespace: dev
  labels:
    user: heima
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  - name: busybox
    image: busybox:1.30

在这里插入图片描述
上面定义了一个比较简单Pod的配置,里面有两个容器:

  • nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)
  • busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)
# 创建Pod
[root@k8s-master01 pod]# kubectl apply -f pod-base.yaml
pod/pod-base created

# 查看Pod状况
# READY 1/2 : 表示当前Pod中有2个容器,其中1个准备就绪,1个未就绪
# RESTARTS  : 重启次数,因为有1个容器故障了,Pod一直在重启试图恢复它
[root@k8s-master01 pod]# kubectl get pod -n dev
NAME       READY   STATUS    RESTARTS   AGE
pod-base   1/2     Running   4          95s

# 可以通过describe查看内部的详情
# 此时已经运行起来了一个基本的Pod,虽然它暂时有问题
[root@k8s-master01 pod]# kubectl describe pod pod-base -n dev

镜像拉取

创建pod-imagepullpolicy.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-imagepullpolicy
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    imagePullPolicy: Never # 用于设置镜像拉取策略
  - name: busybox
    image: busybox:1.30

在这里插入图片描述
imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:

  • Always:总是从远程仓库拉取镜像(一直远程下载)
  • IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)
  • Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)

默认值说明:
如果镜像tag为具体版本号, 默认策略是:IfNotPresent
如果镜像tag为:latest(最终版本) ,默认策略是always

# 创建Pod
[root@k8s-master01 pod]# kubectl create -f pod-imagepullpolicy.yaml
pod/pod-imagepullpolicy created

# 查看Pod详情
# 此时明显可以看到nginx镜像有一步Pulling image "nginx:1.17.1"的过程
[root@k8s-master01 pod]# kubectl describe pod pod-imagepullpolicy -n dev
......
Events:
  Type     Reason     Age               From               Message
  ----     ------     ----              ----               -------
  Normal   Scheduled  <unknown>         default-scheduler  Successfully assigned dev/pod-imagePullPolicy to node1
  Normal   Pulling    32s               kubelet, node1     Pulling image "nginx:1.17.1"
  Normal   Pulled     26s               kubelet, node1     Successfully pulled image "nginx:1.17.1"
  Normal   Created    26s               kubelet, node1     Created container nginx
  Normal   Started    25s               kubelet, node1     Started container nginx
  Normal   Pulled     7s (x3 over 25s)  kubelet, node1     Container image "busybox:1.30" already present on machine
  Normal   Created    7s (x3 over 25s)  kubelet, node1     Created container busybox
  Normal   Started    7s (x3 over 25s)  kubelet, node1     Started container busybox

启动命令

在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?

原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。

创建pod-command.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-command
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]

在这里插入图片描述
command,用于在pod中的容器初始化完毕之后运行一个命令。

稍微解释下上面命令的意思:
“/bin/sh”,“-c”, 使用sh执行命令
touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件
while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间

# 创建Pod
[root@k8s-master01 pod]# kubectl create  -f pod-command.yaml
pod/pod-command created

# 查看Pod状态
# 此时发现两个pod都正常运行了
[root@k8s-master01 pod]# kubectl get pods pod-command -n dev
NAME          READY   STATUS   RESTARTS   AGE
pod-command   2/2     Runing   0          2s

# 进入pod中的busybox容器,查看文件内容
# 补充一个命令: kubectl exec  pod名称 -n 命名空间 -it -c 容器名称 /bin/sh  在容器内部执行命令
# 使用这个命令就可以进入某个容器的内部,然后进行相关操作了
# 比如,可以查看txt文件的内容
[root@k8s-master01 pod]# kubectl exec pod-command -n dev -it -c busybox /bin/sh
/ # tail -f /tmp/hello.txt
14:44:19
14:44:22
14:44:25

特别说明:通过上面发现 command 已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个 args 选项,用于传递参数呢?这其实跟 docker 有点关系,kubernetes 中的 command、args 两项其实是实现覆盖 Dockerfile 中 ENTRYPOINT 的功能。

  1. 如果 command 和 args 均没有写,那么用 Dockerfile 的配置。
  2. 如果 command 写了,但 args 没有写,那么 Dockerfile 默认的配置会被忽略,执行输入的 command
  3. 如果 command 没写,但 args 写了,那么 Dockerfile 中配置的 ENTRYPOINT 的命令会被执行,使用当前 args 的参数
  4. 如果 command 和 args 都写了,那么 Dockerfile 的配置被忽略,执行 command 并追加上 args 参数

环境变量

创建pod-env.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-env
  namespace: dev
spec:
  containers:
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","while true;do /bin/echo $(date +%T);sleep 60; done;"]
    env: # 设置环境变量列表
    - name: "username"
      value: "admin"
    - name: "password"
      value: "123456"

env,环境变量,用于在pod中的容器设置环境变量。

# 创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-env.yaml
pod/pod-env created

# 进入容器,输出环境变量
[root@k8s-master01 ~]# kubectl exec pod-env -n dev -c busybox -it /bin/sh
/ # echo $username
admin
/ # echo $password
123456

这种方式不是很推荐,推荐将这些配置单独存储在配置文件中,这种方式将在后面介绍。

端口设置

本小节来介绍容器的端口设置,也就是containers的ports选项。

首先看下ports支持的子选项:

[root@k8s-master01 ~]# kubectl explain pod.spec.containers.ports
KIND:     Pod
VERSION:  v1
RESOURCE: ports <[]Object>
FIELDS:
   name         <string>  # 端口名称,如果指定,必须保证name在pod中是唯一的		
   containerPort<integer> # 容器要监听的端口(0<x<65536)
   hostPort     <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略) 
   hostIP       <string>  # 要将外部端口绑定到的主机IP(一般省略)
   protocol     <string>  # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”。

接下来,编写一个测试案例,创建pod-ports.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-ports
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports: # 设置容器暴露的端口列表
    - name: nginx-port
      containerPort: 80
      protocol: TCP
# 创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-ports.yaml
pod/pod-ports created

# 查看pod
# 在下面可以明显看到配置信息
[root@k8s-master01 ~]# kubectl get pod pod-ports -n dev -o yaml
......
spec:
  containers:
  - image: nginx:1.17.1
    imagePullPolicy: IfNotPresent
    name: nginx
    ports:
    - containerPort: 80
      name: nginx-port
      protocol: TCP
......

访问容器中的程序需要使用的是Podip:containerPort

资源配额

容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:

  • limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
  • requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动

可以通过上面两个选项设置资源的上下限。

接下来,编写一个测试案例,创建pod-resources.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-resources
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    resources: # 资源配额
      limits:  # 限制资源(上限)
        cpu: "2" # CPU限制,单位是core数
        memory: "10Gi" # 内存限制
      requests: # 请求资源(下限)
        cpu: "1"  # CPU限制,单位是core数
        memory: "10Mi"  # 内存限制

在这对cpu和memory的单位做一个说明:

  • cpu:core数,可以为整数或小数
  • memory: 内存大小,可以使用Gi、Mi、G、M等形式
# 运行Pod
[root@k8s-master01 ~]# kubectl create  -f pod-resources.yaml
pod/pod-resources created

# 查看发现pod运行正常
[root@k8s-master01 ~]# kubectl get pod pod-resources -n dev
NAME            READY   STATUS    RESTARTS   AGE  
pod-resources   1/1     Running   0          39s   

# 接下来,停止Pod
[root@k8s-master01 ~]# kubectl delete  -f pod-resources.yaml
pod "pod-resources" deleted

# 编辑pod,修改resources.requests.memory的值为10Gi
[root@k8s-master01 ~]# vim pod-resources.yaml

# 再次启动pod
[root@k8s-master01 ~]# kubectl create  -f pod-resources.yaml
pod/pod-resources created

# 查看Pod状态,发现Pod启动失败
[root@k8s-master01 ~]# kubectl get pod pod-resources -n dev -o wide
NAME            READY   STATUS    RESTARTS   AGE          
pod-resources   0/1     Pending   0          20s    

# 查看pod详情会发现,如下提示
[root@k8s-master01 ~]# kubectl describe pod pod-resources -n dev
......
Warning  FailedScheduling  35s   default-scheduler  0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 Insufficient memory.(内存不足)

Pod生命周期

我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:

  • pod创建过程
  • 运行初始化容器(init container)过程
  • 运行主容器(main container)
    • 容器启动后钩子(post start)、容器终止前钩子(pre stop)
    • 容器的存活性探测(liveness probe)、就绪性探测(readiness probe)
  • pod终止过程

在这里插入图片描述
在整个生命周期中,Pod会出现5种状态(相位),分别如下:

  • 挂起(Pending):apiserver已经创建了pod资源对象,但它尚未被调度完成或者仍处于下载镜像的过程中
  • 运行中(Running):pod已经被调度至某节点,并且所有容器都已经被kubelet创建完成
  • 成功(Succeeded):pod中的所有容器都已经成功终止并且不会被重启
  • 失败(Failed):所有容器都已经终止,但至少有一个容器终止失败,即容器返回了非0值的退出状态
  • 未知(Unknown):apiserver无法正常获取到pod对象的状态信息,通常由网络通信失败所导致

创建和终止

pod的创建过程

  1. 用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer
  2. apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端
  3. apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动
  4. scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer
  5. node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer
  6. apiServer将接收到的pod状态信息存入etcd中

在这里插入图片描述
pod的终止过程

  1. 用户向apiServer发送删除pod对象的命令
  2. apiServcer中的pod对象信息会随着时间的推移而更新,在宽限期内(默认30s),pod被视为dead
  3. 将pod标记为terminating状态
  4. kubelet在监控到pod对象转为terminating状态的同时启动pod关闭过程
  5. 端点控制器监控到pod对象的关闭行为时将其从所有匹配到此端点的service资源的端点列表中移除
  6. 如果当前pod对象定义了preStop钩子处理器,则在其标记为terminating后即会以同步的方式启动执行
  7. pod对象中的容器进程收到停止信号
  8. 宽限期结束后,若pod中还存在仍在运行的进程,那么pod对象会收到立即终止的信号
  9. kubelet请求apiServer将此pod资源的宽限期设置为0从而完成删除操作,此时pod对于用户已不可见

初始化容器

初始化容器是在pod的主容器启动之前要运行的容器,主要是做一些主容器的前置工作,它具有两大特征:

  1. 初始化容器必须运行完成直至结束,若某初始化容器运行失败,那么kubernetes需要重启它直到成功完成
  2. 初始化容器必须按照定义的顺序执行,当且仅当前一个成功之后,后面的一个才能运行

初始化容器有很多的应用场景,下面列出的是最常见的几个:

  • 提供主容器镜像中不具备的工具程序或自定义代码
  • 初始化容器要先于应用容器串行启动并运行完成,因此可用于延后应用容器的启动直至其依赖的条件得到满足

接下来做一个案例,模拟下面这个需求:

假设要以主容器来运行nginx,但是要求在运行nginx之前先要能够连接上mysql和redis所在服务器

为了简化测试,事先规定好mysql(192.168.90.14)redis(192.168.90.15)服务器的地址

创建pod-initcontainer.yaml,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-initcontainer
  namespace: dev
spec:
  containers:
  - name: main-container
    image: nginx:1.17.1
    ports: 
    - name: nginx-port
      containerPort: 80
  initContainers:
  - name: test-mysql
    image: busybox:1.30
    command: ['sh', '-c', 'until ping 192.168.90.14 -c 1 ; do echo waiting for mysql...; sleep 2; done;']
  - name: test-redis
    image: busybox:1.30
    command: ['sh', '-c', 'until ping 192.168.90.15 -c 1 ; do echo waiting for reids...; sleep 2; done;']
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-initcontainer.yaml
pod/pod-initcontainer created

# 查看pod状态
# 发现pod卡在启动第一个初始化容器过程中,后面的容器不会运行
root@k8s-master01 ~]# kubectl describe pod  pod-initcontainer -n dev
........
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  49s   default-scheduler  Successfully assigned dev/pod-initcontainer to node1
  Normal  Pulled     48s   kubelet, node1     Container image "busybox:1.30" already present on machine
  Normal  Created    48s   kubelet, node1     Created container test-mysql
  Normal  Started    48s   kubelet, node1     Started container test-mysql

# 动态查看pod
[root@k8s-master01 ~]# kubectl get pods pod-initcontainer -n dev -w
NAME                             READY   STATUS     RESTARTS   AGE
pod-initcontainer                0/1     Init:0/2   0          15s
pod-initcontainer                0/1     Init:1/2   0          52s
pod-initcontainer                0/1     Init:1/2   0          53s
pod-initcontainer                0/1     PodInitializing   0          89s
pod-initcontainer                1/1     Running           0          90s

# 接下来新开一个shell,为当前服务器新增两个ip,观察pod的变化
[root@k8s-master01 ~]# ifconfig ens33:1 192.168.90.14 netmask 255.255.255.0 up
[root@k8s-master01 ~]# ifconfig ens33:2 192.168.90.15 netmask 255.255.255.0 up

钩子函数

钩子函数能够感知自身生命周期中的事件,并在相应的时刻到来时运行用户指定的程序代码。

kubernetes在主容器的启动之后和停止之前提供了两个钩子函数:

  • post start:容器创建之后执行,如果失败了会重启容器
  • pre stop :容器终止之前执行,执行完成之后容器将成功终止,在其完成之前会阻塞删除容器的操作

钩子处理器支持使用下面三种方式定义动作:

  • Exec命令:在容器内执行一次命令
lifecycle:
  postStart: 
    exec:
      command:
      - cat
      - /tmp/healthy

TCPSocket:在当前容器尝试访问指定的socket

lifecycle:
  postStart:
    tcpSocket:
      port: 8080

HTTPGet:在当前容器中向某url发起http请求

lifecycle:
  postStart:
    httpGet:
      path: / #URI地址
      port: 80 #端口号
      host: 192.168.5.3 #主机地址
      scheme: HTTP #支持的协议,http或者https

接下来,以exec方式为例,演示下钩子函数的使用,创建pod-hook-exec.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-hook-exec
  namespace: dev
spec:
  containers:
  - name: main-container
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    lifecycle:
      postStart: 
        exec: # 在容器启动的时候执行一个命令,修改掉nginx的默认首页内容
          command: ["/bin/sh", "-c", "echo postStart... > /usr/share/nginx/html/index.html"]
      preStop:
        exec: # 在容器停止之前停止nginx服务
          command: ["/usr/sbin/nginx","-s","quit"]
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-hook-exec.yaml
pod/pod-hook-exec created

# 查看pod
[root@k8s-master01 ~]# kubectl get pods  pod-hook-exec -n dev -o wide
NAME           READY   STATUS     RESTARTS   AGE    IP            NODE    
pod-hook-exec  1/1     Running    0          29s    10.244.2.48   node2   

# 访问pod
[root@k8s-master01 ~]# curl 10.244.2.48
postStart...

容器探测

容器探测用于检测容器中的应用实例是否正常工作,是保障业务可用性的一种传统机制。如果经过探测,实例的状态不符合预期,那么kubernetes就会把该问题实例" 摘除 ",不承担业务流量。kubernetes提供了两种探针来实现容器探测,分别是:

  • liveness probes:存活性探针,用于检测应用实例当前是否处于正常运行状态,如果不是,k8s会重启容器
  • readiness probes:就绪性探针,用于检测应用实例当前是否可以接收请求,如果不能,k8s不会转发流量

livenessProbe 决定是否重启容器,readinessProbe 决定是否将请求转发给容器。

上面两种探针目前均支持三种探测方式:

  • Exec命令:在容器内执行一次命令,如果命令执行的退出码为0,则认为程序正常,否则不正常
livenessProbe:
  exec:
    command:
    - cat
    - /tmp/healthy
  • TCPSocket:将会尝试访问一个用户容器的端口,如果能够建立这条连接,则认为程序正常,否则不正常
livenessProbe:
  tcpSocket:
    port: 8080
  • HTTPGet:调用容器内Web应用的URL,如果返回的状态码在200和399之间,则认为程序正常,否则不正常
livenessProbe:
  httpGet:
    path: / #URI地址
    port: 80 #端口号
    host: 127.0.0.1 #主机地址
    scheme: HTTP #支持的协议,http或者https

下面以liveness probes为例,做几个演示:

方式一:Exec

创建pod-liveness-exec.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-exec
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports: 
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      exec:
        command: ["/bin/cat","/tmp/hello.txt"] # 执行一个查看文件的命令

创建pod,观察效果

# 创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-liveness-exec.yaml
pod/pod-liveness-exec created

# 查看Pod详情
[root@k8s-master01 ~]# kubectl describe pods pod-liveness-exec -n dev
......
  Normal   Created    20s (x2 over 50s)  kubelet, node1     Created container nginx
  Normal   Started    20s (x2 over 50s)  kubelet, node1     Started container nginx
  Normal   Killing    20s                kubelet, node1     Container nginx failed liveness probe, will be restarted
  Warning  Unhealthy  0s (x5 over 40s)   kubelet, node1     Liveness probe failed: cat: can't open '/tmp/hello11.txt': No such file or directory
  
# 观察上面的信息就会发现nginx容器启动之后就进行了健康检查
# 检查失败之后,容器被kill掉,然后尝试进行重启(这是重启策略的作用,后面讲解)
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@k8s-master01 ~]# kubectl get pods pod-liveness-exec -n dev
NAME                READY   STATUS             RESTARTS   AGE
pod-liveness-exec   0/1     CrashLoopBackOff   2          3m19s

# 当然接下来,可以修改成一个存在的文件,比如/tmp/hello.txt,再试,结果就正常了......

方式二:TCPSocket

创建pod-liveness-tcpsocket.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-tcpsocket
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports: 
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      tcpSocket:
        port: 8080 # 尝试访问8080端口

创建pod,观察效果

# 创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-liveness-tcpsocket.yaml
pod/pod-liveness-tcpsocket created

# 查看Pod详情
[root@k8s-master01 ~]# kubectl describe pods pod-liveness-tcpsocket -n dev
......
  Normal   Scheduled  31s                            default-scheduler  Successfully assigned dev/pod-liveness-tcpsocket to node2
  Normal   Pulled     <invalid>                      kubelet, node2     Container image "nginx:1.17.1" already present on machine
  Normal   Created    <invalid>                      kubelet, node2     Created container nginx
  Normal   Started    <invalid>                      kubelet, node2     Started container nginx
  Warning  Unhealthy  <invalid> (x2 over <invalid>)  kubelet, node2     Liveness probe failed: dial tcp 10.244.2.44:8080: connect: connection refused
  
# 观察上面的信息,发现尝试访问8080端口,但是失败了
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@k8s-master01 ~]# kubectl get pods pod-liveness-tcpsocket  -n dev
NAME                     READY   STATUS             RESTARTS   AGE
pod-liveness-tcpsocket   0/1     CrashLoopBackOff   2          3m19s

# 当然接下来,可以修改成一个可以访问的端口,比如80,再试,结果就正常了......

方式三:HTTPGet

创建pod-liveness-httpget.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-httpget
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      httpGet:  # 其实就是访问http://127.0.0.1:80/hello  
        scheme: HTTP #支持的协议,http或者https
        port: 80 #端口号
        path: /hello #URI地址

创建pod,观察效果

# 创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-liveness-httpget.yaml
pod/pod-liveness-httpget created

# 查看Pod详情
[root@k8s-master01 ~]# kubectl describe pod pod-liveness-httpget -n dev
.......
  Normal   Pulled     6s (x3 over 64s)  kubelet, node1     Container image "nginx:1.17.1" already present on machine
  Normal   Created    6s (x3 over 64s)  kubelet, node1     Created container nginx
  Normal   Started    6s (x3 over 63s)  kubelet, node1     Started container nginx
  Warning  Unhealthy  6s (x6 over 56s)  kubelet, node1     Liveness probe failed: HTTP probe failed with statuscode: 404
  Normal   Killing    6s (x2 over 36s)  kubelet, node1     Container nginx failed liveness probe, will be restarted
  
# 观察上面信息,尝试访问路径,但是未找到,出现404错误
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@k8s-master01 ~]# kubectl get pod pod-liveness-httpget -n dev
NAME                   READY   STATUS    RESTARTS   AGE
pod-liveness-httpget   1/1     Running   5          3m17s

# 当然接下来,可以修改成一个可以访问的路径path,比如/,再试,结果就正常了......

至此,已经使用liveness Probe演示了三种探测方式,但是查看livenessProbe的子属性,会发现除了这三种方式,还有一些其他的配置,在这里一并解释下:

[root@k8s-master01 ~]# kubectl explain pod.spec.containers.livenessProbe
FIELDS:
   exec <Object>  
   tcpSocket    <Object>
   httpGet      <Object>
   initialDelaySeconds  <integer>  # 容器启动后等待多少秒执行第一次探测
   timeoutSeconds       <integer>  # 探测超时时间。默认1秒,最小1秒
   periodSeconds        <integer>  # 执行探测的频率。默认是10秒,最小1秒
   failureThreshold     <integer>  # 连续探测失败多少次才被认定为失败。默认是3。最小值是1
   successThreshold     <integer>  # 连续探测成功多少次才被认定为成功。默认是1

下面稍微配置两个,演示下效果即可:

[root@k8s-master01 ~]# more pod-liveness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-httpget
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      httpGet:
        scheme: HTTP
        port: 80 
        path: /
      initialDelaySeconds: 30 # 容器启动后30s开始探测
      timeoutSeconds: 5 # 探测超时时间为5s

重启策略

在上一节中,一旦容器探测出现了问题,kubernetes就会对容器所在的Pod进行重启,其实这是由pod的重启策略决定的,pod的重启策略有 3 种,分别如下:

  • Always :容器失效时,自动重启该容器,这也是默认值。
  • OnFailure : 容器终止运行且退出码不为0时重启
  • Never : 不论状态为何,都不重启该容器

重启策略适用于pod对象中的所有容器,首次需要重启的容器,将在其需要时立即进行重启,随后再次需要重启的操作将由kubelet延迟一段时间后进行,且反复的重启操作的延迟时长以此为10s、20s、40s、80s、160s和300s,300s是最大延迟时长。

创建pod-restartpolicy.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: pod-restartpolicy
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      httpGet:
        scheme: HTTP
        port: 80
        path: /hello
  restartPolicy: Never # 设置重启策略为Never

运行Pod测试

# 创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-restartpolicy.yaml
pod/pod-restartpolicy created

# 查看Pod详情,发现nginx容器失败
[root@k8s-master01 ~]# kubectl  describe pods pod-restartpolicy  -n dev
......
  Warning  Unhealthy  15s (x3 over 35s)  kubelet, node1     Liveness probe failed: HTTP probe failed with statuscode: 404
  Normal   Killing    15s                kubelet, node1     Container nginx failed liveness probe
  
# 多等一会,再观察pod的重启次数,发现一直是0,并未重启   
[root@k8s-master01 ~]# kubectl  get pods pod-restartpolicy -n dev
NAME                   READY   STATUS    RESTARTS   AGE
pod-restartpolicy      0/1     Running   0          5min42s

Pod调度

在默认情况下,一个Pod在哪个Node节点上运行,是由Scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的。但是在实际使用中,这并不满足的需求,因为很多情况下,我们想控制某些Pod到达某些节点上,那么应该怎么做呢?这就要求了解kubernetes对Pod的调度规则,kubernetes提供了四大类调度方式:

  • 自动调度:运行在哪个节点上完全由Scheduler经过一系列的算法计算得出
  • 定向调度:NodeName、NodeSelector
  • 亲和性调度:NodeAffinity、PodAffinity、PodAntiAffinity
  • 污点(容忍)调度:Taints、Toleration

定向调度

定向调度,指的是利用在pod上声明nodeName或者nodeSelector,以此将Pod调度到期望的node节点上。注意,这里的调度是强制的,这就意味着即使要调度的目标Node不存在,也会向上面进行调度,只不过pod运行失败而已。

NodeName

NodeName用于强制约束将Pod调度到指定的Name的Node节点上。这种方式,其实是直接跳过Scheduler的调度逻辑,直接将Pod调度到指定名称的节点。

接下来,实验一下:创建一个pod-nodename.yaml文件

apiVersion: v1
kind: Pod
metadata:
  name: pod-nodename
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  nodeName: node1 # 指定调度到node1节点上
#创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-nodename.yaml
pod/pod-nodename created

#查看Pod调度到NODE属性,确实是调度到了node1节点上
[root@k8s-master01 ~]# kubectl get pods pod-nodename -n dev -o wide
NAME           READY   STATUS    RESTARTS   AGE   IP            NODE      ......
pod-nodename   1/1     Running   0          56s   10.244.1.87   node1     ......   

# 接下来,删除pod,修改nodeName的值为node3(并没有node3节点)
[root@k8s-master01 ~]# kubectl delete -f pod-nodename.yaml
pod "pod-nodename" deleted
[root@k8s-master01 ~]# vim pod-nodename.yaml
[root@k8s-master01 ~]# kubectl create -f pod-nodename.yaml
pod/pod-nodename created

#再次查看,发现已经向Node3节点调度,但是由于不存在node3节点,所以pod无法正常运行
[root@k8s-master01 ~]# kubectl get pods pod-nodename -n dev -o wide
NAME           READY   STATUS    RESTARTS   AGE   IP       NODE    ......
pod-nodename   0/1     Pending   0          6s    <none>   node3   ......           
NodeSelector

NodeSelector用于将pod调度到添加了指定标签的node节点上。它是通过kubernetes的label-selector机制实现的,也就是说,在pod创建之前,会由scheduler使用MatchNodeSelector调度策略进行label匹配,找出目标node,然后将pod调度到目标节点,该匹配规则是强制约束。

接下来,实验一下:

1 首先分别为node节点添加标签

[root@k8s-master01 ~]# kubectl label nodes node1 nodeenv=pro
node/node2 labeled
[root@k8s-master01 ~]# kubectl label nodes node2 nodeenv=test
node/node2 labeled

2 创建一个pod-nodeselector.yaml文件,并使用它创建Pod

apiVersion: v1
kind: Pod
metadata:
  name: pod-nodeselector
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  nodeSelector: 
    nodeenv: pro # 指定调度到具有nodeenv=pro标签的节点上
#创建Pod
[root@k8s-master01 ~]# kubectl create -f pod-nodeselector.yaml
pod/pod-nodeselector created

#查看Pod调度到NODE属性,确实是调度到了node1节点上
[root@k8s-master01 ~]# kubectl get pods pod-nodeselector -n dev -o wide
NAME               READY   STATUS    RESTARTS   AGE     IP          NODE    ......
pod-nodeselector   1/1     Running   0          47s   10.244.1.87   node1   ......

# 接下来,删除pod,修改nodeSelector的值为nodeenv: xxxx(不存在打有此标签的节点)
[root@k8s-master01 ~]# kubectl delete -f pod-nodeselector.yaml
pod "pod-nodeselector" deleted
[root@k8s-master01 ~]# vim pod-nodeselector.yaml
[root@k8s-master01 ~]# kubectl create -f pod-nodeselector.yaml
pod/pod-nodeselector created

#再次查看,发现pod无法正常运行,Node的值为none
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME               READY   STATUS    RESTARTS   AGE     IP       NODE    
pod-nodeselector   0/1     Pending   0          2m20s   <none>   <none>

# 查看详情,发现node selector匹配失败的提示
[root@k8s-master01 ~]# kubectl describe pods pod-nodeselector -n dev
.......
Events:
  Type     Reason            Age        From               Message
  ----     ------            ----       ----               -------
  Warning  FailedScheduling  <unknown>  default-scheduler  0/3 nodes are available: 3 node(s) didn't match node selector.

亲和性调度

上一节,介绍了两种定向调度的方式,使用起来非常方便,但是也有一定的问题,那就是如果没有满足条件的Node,那么Pod将不会被运行,即使在集群中还有可用Node列表也不行,这就限制了它的使用场景。

基于上面的问题,kubernetes还提供了一种亲和性调度(Affinity)。它在NodeSelector的基础之上的进行了扩展,可以通过配置的形式,实现优先选择满足条件的Node进行调度,如果没有,也可以调度到不满足条件的节点上,使调度更加灵活。

Affinity主要分为三类:

  • nodeAffinity(node亲和性): 以node为目标,解决pod可以调度到哪些node的问题
  • podAffinity(pod亲和性) : 以pod为目标,解决pod可以和哪些已存在的pod部署在同一个拓扑域中的问题
  • podAntiAffinity(pod反亲和性) : 以pod为目标,解决pod不能和哪些已存在pod部署在同一个拓扑域中的问题

关于亲和性(反亲和性)使用场景的说明:
亲和性:如果两个应用频繁交互,那就有必要利用亲和性让两个应用的尽可能的靠近,这样可以减少因网络通信而带来的性能损耗。
反亲和性:当应用的采用多副本部署时,有必要采用反亲和性让各个应用实例打散分布在各个node上,这样可以提高服务的高可用性。

NodeAffinity

首先来看一下NodeAffinity的可配置项:

pod.spec.affinity.nodeAffinity
  requiredDuringSchedulingIgnoredDuringExecution  Node节点必须满足指定的所有规则才可以,相当于硬限制
    nodeSelectorTerms  节点选择列表
      matchFields   按节点字段列出的节点选择器要求列表
      matchExpressions   按节点标签列出的节点选择器要求列表(推荐)
        key    键
        values 值
        operat or 关系符 支持Exists, DoesNotExist, In, NotIn, Gt, Lt
  preferredDuringSchedulingIgnoredDuringExecution 优先调度到满足指定的规则的Node,相当于软限制 (倾向)
    preference   一个节点选择器项,与相应的权重相关联
      matchFields   按节点字段列出的节点选择器要求列表
      matchExpressions   按节点标签列出的节点选择器要求列表(推荐)
        key    键
        values 值
        operator 关系符 支持In, NotIn, Exists, DoesNotExist, Gt, Lt
	weight 倾向权重,在范围1-100。

关系符的使用说明:

- matchExpressions:
  - key: nodeenv              # 匹配存在标签的key为nodeenv的节点
    operator: Exists
  - key: nodeenv              # 匹配标签的key为nodeenv,且value是"xxx"或"yyy"的节点
    operator: In
    values: ["xxx","yyy"]
  - key: nodeenv              # 匹配标签的key为nodeenv,且value大于"xxx"的节点
    operator: Gt
    values: "xxx"

接下来首先演示一下requiredDuringSchedulingIgnoredDuringExecution

创建pod-nodeaffinity-required.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-nodeaffinity-required
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  affinity:  #亲和性设置
    nodeAffinity: #设置node亲和性
      requiredDuringSchedulingIgnoredDuringExecution: # 硬限制
        nodeSelectorTerms:
        - matchExpressions: # 匹配env的值在["xxx","yyy"]中的标签
          - key: nodeenv
            operator: In
            values: ["xxx","yyy"]
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-nodeaffinity-required.yaml
pod/pod-nodeaffinity-required created

# 查看pod状态 (运行失败)
[root@k8s-master01 ~]# kubectl get pods pod-nodeaffinity-required -n dev -o wide
NAME                        READY   STATUS    RESTARTS   AGE   IP       NODE    ...... 
pod-nodeaffinity-required   0/1     Pending   0          16s   <none>   <none>  ......

# 查看Pod的详情
# 发现调度失败,提示node选择失败
[root@k8s-master01 ~]# kubectl describe pod pod-nodeaffinity-required -n dev
......
  Warning  FailedScheduling  <unknown>  default-scheduler  0/3 nodes are available: 3 node(s) didn't match node selector.
  Warning  FailedScheduling  <unknown>  default-scheduler  0/3 nodes are available: 3 node(s) didn't match node selector.

#接下来,停止pod
[root@k8s-master01 ~]# kubectl delete -f pod-nodeaffinity-required.yaml
pod "pod-nodeaffinity-required" deleted

# 修改文件,将values: ["xxx","yyy"]------> ["pro","yyy"]
[root@k8s-master01 ~]# vim pod-nodeaffinity-required.yaml

# 再次启动
[root@k8s-master01 ~]# kubectl create -f pod-nodeaffinity-required.yaml
pod/pod-nodeaffinity-required created

# 此时查看,发现调度成功,已经将pod调度到了node1上
[root@k8s-master01 ~]# kubectl get pods pod-nodeaffinity-required -n dev -o wide
NAME                        READY   STATUS    RESTARTS   AGE   IP            NODE  ...... 
pod-nodeaffinity-required   1/1     Running   0          11s   10.244.1.89   node1 ......

接下来再演示一下requiredDuringSchedulingIgnoredDuringExecution

创建pod-nodeaffinity-preferred.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-nodeaffinity-preferred
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  affinity:  #亲和性设置
    nodeAffinity: #设置node亲和性
      preferredDuringSchedulingIgnoredDuringExecution: # 软限制
      - weight: 1
        preference:
          matchExpressions: # 匹配env的值在["xxx","yyy"]中的标签(当前环境没有)
          - key: nodeenv
            operator: In
            values: ["xxx","yyy"]
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-nodeaffinity-preferred.yaml
pod/pod-nodeaffinity-preferred created

# 查看pod状态 (运行成功)
[root@k8s-master01 ~]# kubectl get pod pod-nodeaffinity-preferred -n dev
NAME                         READY   STATUS    RESTARTS   AGE
pod-nodeaffinity-preferred   1/1     Running   0          40s

NodeAffinity规则设置的注意事项:

  1. 如果同时定义了 nodeSelector 和 nodeAffinity,那么必须两个条件都得到满足,Pod 才能运行在指定的 Node 上
  2. 如果 nodeAffinity 指定了多个 nodeSelectorTerms,那么只需要其中一个能够匹配成功即可
  3. 如果一个 nodeSelectorTerms 中有多个 matchExpressions ,则一个节点必须满足所有的才能匹配成功
  4. 如果一个 pod 所在的 Node 在 Pod 运行期间其标签发生了改变,不再符合该Pod 的节点亲和性需求,则系统将忽略此变化
PodAffinity

PodAffinity主要实现以运行的Pod为参照,实现让新创建的Pod跟参照pod在一个区域的功能。

首先来看一下PodAffinity的可配置项:

pod.spec.affinity.podAffinity
  requiredDuringSchedulingIgnoredDuringExecution  硬限制
    namespaces       指定参照pod的namespace
    topologyKey      指定调度作用域
    labelSelector    标签选择器
      matchExpressions  按节点标签列出的节点选择器要求列表(推荐)
        key    键
        values 值
        operator 关系符 支持In, NotIn, Exists, DoesNotExist.
      matchLabels    指多个matchExpressions映射的内容
  preferredDuringSchedulingIgnoredDuringExecution 软限制
    podAffinityTerm  选项
      namespaces      
      topologyKey
      labelSelector
        matchExpressions  
          key    键
          values 值
          operator
        matchLabels 
    weight 倾向权重,在范围1-100

topologyKey用于指定调度时作用域,例如:

  • 如果指定为kubernetes.io/hostname,那就是以Node节点为区分范围
  • 如果指定为beta.kubernetes.io/os,则以Node节点的操作系统类型来区分

接下来,演示下requiredDuringSchedulingIgnoredDuringExecution

1)首先创建一个参照Pod,pod-podaffinity-target.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: pod-podaffinity-target
  namespace: dev
  labels:
    podenv: pro #设置标签
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  nodeName: node1 # 将目标pod名确指定到node1上
# 启动目标pod
[root@k8s-master01 ~]# kubectl create -f pod-podaffinity-target.yaml
pod/pod-podaffinity-target created

# 查看pod状况
[root@k8s-master01 ~]# kubectl get pods  pod-podaffinity-target -n dev
NAME                     READY   STATUS    RESTARTS   AGE
pod-podaffinity-target   1/1     Running   0          4s

2)创建pod-podaffinity-required.yaml,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-podaffinity-required
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  affinity:  #亲和性设置
    podAffinity: #设置pod亲和性
      requiredDuringSchedulingIgnoredDuringExecution: # 硬限制
      - labelSelector:
          matchExpressions: # 匹配env的值在["xxx","yyy"]中的标签
          - key: podenv
            operator: In
            values: ["xxx","yyy"]
        topologyKey: kubernetes.io/hostname

上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=xxx或者nodeenv=yyy的pod在同一Node上,显然现在没有这样pod,接下来,运行测试一下。

# 启动pod
[root@k8s-master01 ~]# kubectl create -f pod-podaffinity-required.yaml
pod/pod-podaffinity-required created

# 查看pod状态,发现未运行
[root@k8s-master01 ~]# kubectl get pods pod-podaffinity-required -n dev
NAME                       READY   STATUS    RESTARTS   AGE
pod-podaffinity-required   0/1     Pending   0          9s

# 查看详细信息
[root@k8s-master01 ~]# kubectl describe pods pod-podaffinity-required  -n dev
......
Events:
  Type     Reason            Age        From               Message
  ----     ------            ----       ----               -------
  Warning  FailedScheduling  <unknown>  default-scheduler  0/3 nodes are available: 2 node(s) didn't match pod affinity rules, 1 node(s) had taints that the pod didn't tolerate.

# 接下来修改  values: ["xxx","yyy"]----->values:["pro","yyy"]
# 意思是:新Pod必须要与拥有标签nodeenv=xxx或者nodeenv=yyy的pod在同一Node上
[root@k8s-master01 ~]# vim pod-podaffinity-required.yaml

# 然后重新创建pod,查看效果
[root@k8s-master01 ~]# kubectl delete -f  pod-podaffinity-required.yaml
pod "pod-podaffinity-required" de leted
[root@k8s-master01 ~]# kubectl create -f pod-podaffinity-required.yaml
pod/pod-podaffinity-required created

# 发现此时Pod运行正常
[root@k8s-master01 ~]# kubectl get pods pod-podaffinity-required -n dev
NAME                       READY   STATUS    RESTARTS   AGE   LABELS
pod-podaffinity-required   1/1     Running   0          6s    <none>

关于PodAffinitypreferredDuringSchedulingIgnoredDuringExecution,这里不再演示。

PodAntiAffinity

PodAntiAffinity主要实现以运行的Pod为参照,让新创建的Pod跟参照pod不在一个区域中的功能。

它的配置方式和选项跟PodAffinty是一样的,这里不再做详细解释,直接做一个测试案例。

1)继续使用上个案例中目标pod

[root@k8s-master01 ~]# kubectl get pods -n dev -o wide --show-labels
NAME                     READY   STATUS    RESTARTS   AGE     IP            NODE    LABELS
pod-podaffinity-required 1/1     Running   0          3m29s   10.244.1.38   node1   <none>     
pod-podaffinity-target   1/1     Running   0          9m25s   10.244.1.37   node1   podenv=pro

2)创建pod-podantiaffinity-required.yaml,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-podantiaffinity-required
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  affinity:  #亲和性设置
    podAntiAffinity: #设置pod亲和性
      requiredDuringSchedulingIgnoredDuringExecution: # 硬限制
      - labelSelector:
          matchExpressions: # 匹配podenv的值在["pro"]中的标签
          - key: podenv
            operator: In
            values: ["pro"]
        topologyKey: kubernetes.io/hostname

上面配置表达的意思是:新Pod必须要与拥有标签nodeenv=pro的pod不在同一Node上,运行测试一下。

# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-podantiaffinity-required.yaml
pod/pod-podantiaffinity-required created

# 查看pod
# 发现调度到了node2上
[root@k8s-master01 ~]# kubectl get pods pod-podantiaffinity-required -n dev -o wide
NAME                           READY   STATUS    RESTARTS   AGE   IP            NODE   .. 
pod-podantiaffinity-required   1/1     Running   0          30s   10.244.1.96   node2  ..

污点和容忍

污点(Taints)

前面的调度方式都是站在Pod的角度上,通过在Pod上添加属性,来确定Pod是否要调度到指定的Node上,其实我们也可以站在Node的角度上,通过在Node上添加污点属性,来决定是否允许Pod调度过来。

Node被设置上污点之后就和Pod之间存在了一种相斥的关系,进而拒绝Pod调度进来,甚至可以将已经存在的Pod驱逐出去。

污点的格式为:key=value:effect, key和value是污点的标签,effect描述污点的作用,支持如下三个选项:

  • PreferNoSchedule:kubernetes将尽量避免把Pod调度到具有该污点的Node上,除非没有其他节点可调度
  • NoSchedule:kubernetes将不会把Pod调度到具有该污点的Node上,但不会影响当前Node上已存在的Pod
  • NoExecute:kubernetes将不会把Pod调度到具有该污点的Node上,同时也会将Node上已存在的Pod驱离

在这里插入图片描述
使用kubectl设置和去除污点的命令示例如下:

# 设置污点
kubectl taint nodes node1 key=value:effect

# 去除污点
kubectl taint nodes node1 key:effect-

# 去除所有污点
kubectl taint nodes node1 key-

接下来,演示下污点的效果:

  1. 准备节点node1(为了演示效果更加明显,暂时停止node2节点)
  2. 为node1节点设置一个污点: tag=heima:PreferNoSchedule;然后创建pod1( pod1 可以 )
  3. 修改为node1节点设置一个污点: tag=heima:NoSchedule;然后创建pod2( pod1 正常 pod2 失败 )
  4. 修改为node1节点设置一个污点: tag=heima:NoExecute;然后创建pod3 ( 3个pod都失败 )
# 为node1设置污点(PreferNoSchedule)
[root@k8s-master01 ~]# kubectl taint nodes node1 tag=heima:PreferNoSchedule

# 创建pod1
[root@k8s-master01 ~]# kubectl run taint1 --image=nginx:1.17.1 -n dev
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME                      READY   STATUS    RESTARTS   AGE     IP           NODE   
taint1-7665f7fd85-574h4   1/1     Running   0          2m24s   10.244.1.59   node1    

# 为node1设置污点(取消PreferNoSchedule,设置NoSchedule)
[root@k8s-master01 ~]# kubectl taint nodes node1 tag:PreferNoSchedule-
[root@k8s-master01 ~]# kubectl taint nodes node1 tag=heima:NoSchedule

# 创建pod2
[root@k8s-master01 ~]# kubectl run taint2 --image=nginx:1.17.1 -n dev
[root@k8s-master01 ~]# kubectl get pods taint2 -n dev -o wide
NAME                      READY   STATUS    RESTARTS   AGE     IP            NODE
taint1-7665f7fd85-574h4   1/1     Running   0          2m24s   10.244.1.59   node1 
taint2-544694789-6zmlf    0/1     Pending   0          21s     <none>        <none>   

# 为node1设置污点(取消NoSchedule,设置NoExecute)
[root@k8s-master01 ~]# kubectl taint nodes node1 tag:NoSchedule-
[root@k8s-master01 ~]# kubectl taint nodes node1 tag=heima:NoExecute

# 创建pod3
[root@k8s-master01 ~]# kubectl run taint3 --image=nginx:1.17.1 -n dev
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME                      READY   STATUS    RESTARTS   AGE   IP       NODE     NOMINATED 
taint1-7665f7fd85-htkmp   0/1     Pending   0          35s   <none>   <none>   <none>    
taint2-544694789-bn7wb    0/1     Pending   0          35s   <none>   <none>   <none>     
taint3-6d78dbd749-tktkq   0/1     Pending   0          6s    <none>   <none>   <none>     

小提示:使用kubeadm搭建的集群,默认就会给master节点添加一个污点标记,所以pod就不会调度到master节点上.

容忍(Toleration)

上面介绍了污点的作用,我们可以在node上添加污点用于拒绝pod调度上来,但是如果就是想将一个pod调度到一个有污点的node上去,这时候应该怎么做呢?这就要使用到容忍。
在这里插入图片描述

污点就是拒绝,容忍就是忽略,Node通过污点拒绝pod调度上去,Pod通过容忍忽略拒绝

下面先通过一个案例看下效果:

  1. 上一小节,已经在node1节点上打上了NoExecute的污点,此时pod是调度不上去的
  2. 本小节,可以通过给pod添加容忍,然后将其调度上去

创建pod-toleration.yaml,内容如下

apiVersion: v1
kind: Pod
metadata:
  name: pod-toleration
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
  tolerations:      # 添加容忍
  - key: "tag"        # 要容忍的污点的key
    operator: "Equal" # 操作符
    value: "heima"    # 容忍的污点的value
    effect: "NoExecute"   # 添加容忍的规则,这里必须和标记的污点规则相同
# 添加容忍之前的pod
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME             READY   STATUS    RESTARTS   AGE   IP       NODE     NOMINATED 
pod-toleration   0/1     Pending   0          3s    <none>   <none>   <none>           

# 添加容忍之后的pod
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME             READY   STATUS    RESTARTS   AGE   IP            NODE    NOMINATED
pod-toleration   1/1     Running   0          3s    10.244.1.62   node1   <none>       

下面看一下容忍的详细配置:

[root@k8s-master01 ~]# kubectl explain pod.spec.tolerations
......
FIELDS:
   key       # 对应着要容忍的污点的键,空意味着匹配所有的键
   value     # 对应着要容忍的污点的值
   operator  # key-value的运算符,支持Equal和Exists(默认)
   effect    # 对应污点的effect,空意味着匹配所有影响
   tolerationSeconds   # 容忍时间, 当effect为NoExecute时生效,表示pod在Node上的停留时间

Pod控制器详解

6.1 Pod控制器介绍

Pod是kubernetes的最小管理单元,在kubernetes中,按照pod的创建方式可以将其分为两类:

  • 自主式pod:kubernetes直接创建出来的Pod,这种pod删除后就没有了,也不会重建
  • 控制器创建的pod:kubernetes通过控制器创建的pod,这种pod删除了之后还会自动重建

什么是Pod控制器

Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。

在kubernetes中,有很多类型的pod控制器,每种都有自己的适合的场景,常见的有下面这些:

  • ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代
  • ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级
  • Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本
  • Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷
  • DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务
  • Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务
  • Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行
  • StatefulSet:管理有状态应用

ReplicaSet(RS)

ReplicaSet的主要作用是保证一定数量的pod正常运行,它会持续监听这些Pod的运行状态,一旦Pod发生故障,就会重启或重建。同时它还支持对pod数量的扩缩容和镜像版本的升降级。

在这里插入图片描述

ReplicaSet的资源清单文件:

apiVersion: apps/v1 # 版本号
kind: ReplicaSet # 类型       
metadata: # 元数据
  name: # rs名称 
  namespace: # 所属命名空间 
  labels: #标签
    controller: rs
spec: # 详情描述
  replicas: 3 # 副本数量
  selector: # 选择器,通过它指定该控制器管理哪些pod
    matchLabels:      # Labels匹配规则
      app: nginx-pod
    matchExpressions: # Expressions匹配规则
      - {key: app, operator: In, values: [nginx-pod]}
  template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80

在这里面,需要新了解的配置项就是spec下面几个选项:

  • replicas:指定副本数量,其实就是当前rs创建出来的pod的数量,默认为1
  • selector:选择器,它的作用是建立pod控制器和pod之间的关联关系,采用的Label Selector机制,在pod模板上定义label,在控制器上定义选择器,就可以表明当前控制器能管理哪些pod了
  • template:模板,就是当前控制器创建pod所使用的模板板,里面其实就是前一章学过的pod的定义

创建ReplicaSet

创建pc-replicaset.yaml文件,内容如下:

apiVersion: apps/v1
kind: ReplicaSet   
metadata:
  name: pc-replica
spec:
  replicas: 3
  selector: 
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
# 创建rs
[root@k8s-master01 ~]# kubectl create -f pc-replicaset.yaml
replicaset.apps/pc-replicaset created

# 查看rs
# DESIRED:期望副本数量  
# CURRENT:当前副本数量  
# READY:已经准备好提供服务的副本数量
[root@k8s-master01 ~]# kubectl get rs pc-replicaset -n dev -o wide
NAME          DESIRED   CURRENT READY AGE   CONTAINERS   IMAGES             SELECTOR
pc-replicaset 3         3       3     22s   nginx        nginx:1.17.1       app=nginx-pod

# 查看当前控制器创建出来的pod
# 这里发现控制器创建出来的pod的名称是在控制器名称后面拼接了-xxxxx随机码
[root@k8s-master01 ~]# kubectl get pod -n dev
NAME                          READY   STATUS    RESTARTS   AGE
pc-replicaset-6vmvt   1/1     Running   0          54s
pc-replicaset-fmb8f   1/1     Running   0          54s
pc-replicaset-snrk2   1/1     Running   0          54s

扩缩容

# 编辑rs的副本数量,修改spec:replicas: 6即可
[root@k8s-master01 ~]# kubectl edit rs pc-replicaset -n dev
replicaset.apps/pc-replicaset edited

# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                          READY   STATUS    RESTARTS   AGE
pc-replicaset-6vmvt   1/1     Running   0          114m
pc-replicaset-cftnp   1/1     Running   0          10s
pc-replicaset-fjlm6   1/1     Running   0          10s
pc-replicaset-fmb8f   1/1     Running   0          114m
pc-replicaset-s2whj   1/1     Running   0          10s
pc-replicaset-snrk2   1/1     Running   0          114m

# 当然也可以直接使用命令实现
# 使用scale命令实现扩缩容, 后面--replicas=n直接指定目标数量即可
[root@k8s-master01 ~]# kubectl scale rs pc-replicaset --replicas=2 -n dev
replicaset.apps/pc-replicaset scaled

# 命令运行完毕,立即查看,发现已经有4个开始准备退出了
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                       READY   STATUS        RESTARTS   AGE
pc-replicaset-6vmvt   0/1     Terminating   0          118m
pc-replicaset-cftnp   0/1     Terminating   0          4m17s
pc-replicaset-fjlm6   0/1     Terminating   0          4m17s
pc-replicaset-fmb8f   1/1     Running       0          118m
pc-replicaset-s2whj   0/1     Terminating   0          4m17s
pc-replicaset-snrk2   1/1     Running       0          118m

#稍等片刻,就只剩下2个了
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                       READY   STATUS    RESTARTS   AGE
pc-replicaset-fmb8f   1/1     Running   0          119m
pc-replicaset-snrk2   1/1     Running   0          119m

镜像升级

# 编辑rs的容器镜像 - image: nginx:1.17.2
[root@k8s-master01 ~]# kubectl edit rs pc-replicaset -n dev
replicaset.apps/pc-replicaset edited

# 再次查看,发现镜像版本已经变更了
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                DESIRED  CURRENT   READY   AGE    CONTAINERS   IMAGES        ...
pc-replicaset       2        2         2       140m   nginx         nginx:1.17.2  ...

# 同样的道理,也可以使用命令完成这个工作
# kubectl set image rs rs名称 容器=镜像版本 -n namespace
[root@k8s-master01 ~]# kubectl set image rs pc-replicaset nginx=nginx:1.17.1  -n dev
replicaset.apps/pc-replicaset image updated

# 再次查看,发现镜像版本已经变更了
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                 DESIRED  CURRENT   READY   AGE    CONTAINERS   IMAGES            ...
pc-replicaset        2        2         2       145m   nginx        nginx:1.17.1 ... 

删除ReplicaSet

# 使用kubectl delete命令会删除此RS以及它管理的Pod
# 在kubernetes删除RS前,会将RS的replicasclear调整为0,等待所有的Pod被删除后,在执行RS对象的删除
[root@k8s-master01 ~]# kubectl delete rs pc-replicaset -n dev
replicaset.apps "pc-replicaset" deleted
[root@k8s-master01 ~]# kubectl get pod -n dev -o wide
No resources found in dev namespace.

# 如果希望仅仅删除RS对象(保留Pod),可以使用kubectl delete命令时添加--cascade=false选项(不推荐)。
[root@k8s-master01 ~]# kubectl delete rs pc-replicaset -n dev --cascade=false
replicaset.apps "pc-replicaset" deleted
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                  READY   STATUS    RESTARTS   AGE
pc-replicaset-cl82j   1/1     Running   0          75s
pc-replicaset-dslhb   1/1     Running   0          75s

# 也可以使用yaml直接删除(推荐)
[root@k8s-master01 ~]# kubectl delete -f pc-replicaset.yaml
replicaset.apps "pc-replicaset" deleted

Deployment(Deploy)

为了更好的解决服务编排的问题,kubernetes在V1.2版本开始,引入了Deployment控制器。值得一提的是,这种控制器并不直接管理pod,而是通过管理ReplicaSet来简介管理Pod,即:Deployment管理ReplicaSet,ReplicaSet管理Pod。所以Deployment比ReplicaSet功能更加强大。

在这里插入图片描述

Deployment主要功能有下面几个:

  • 支持ReplicaSet的所有功能
  • 支持发布的停止、继续
  • 支持滚动升级和回滚版本

Deployment的资源清单文件:

apiVersion: apps/v1 # 版本号
kind: Deployment # 类型       
metadata: # 元数据
  name: # rs名称 
  namespace: # 所属命名空间 
  labels: #标签
    controller: deploy
spec: # 详情描述
  replicas: 3 # 副本数量
  revisionHistoryLimit: 3 # 保留历史版本
  paused: false # 暂停部署,默认是false
  progressDeadlineSeconds: 600 # 部署超时时间(s),默认是600
  strategy: # 策略
    type: RollingUpdate # 滚动更新策略
    rollingUpdate: # 滚动更新
      max违规词汇: 30% # 最大额外可以存在的副本数,可以为百分比,也可以为整数
      maxUnavailable: 30% # 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数
  selector: # 选择器,通过它指定该控制器管理哪些pod
    matchLabels:      # Labels匹配规则
      app: nginx-pod
    matchExpressions: # Expressions匹配规则
      - {key: app, operator: In, values: [nginx-pod]}
  template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80

创建deployment

创建pc-deployment.yaml,内容如下:

apiVersion: apps/v1
kind: Deployment      
metadata:
  name: pc-deployment
  namespace: dev
spec: 
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
# 创建deployment
[root@k8s-master01 ~]# kubectl create -f pc-deployment.yaml --record=true
deployment.apps/pc-deployment created

# 查看deployment
# UP-TO-DATE 最新版本的pod的数量
# AVAILABLE  当前可用的pod的数量
[root@k8s-master01 ~]# kubectl get deploy pc-deployment -n dev
NAME            READY   UP-TO-DATE   AVAILABLE   AGE
pc-deployment   3/3     3            3           15s

# 查看rs
# 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串
[root@k8s-master01 ~]# kubectl get rs -n dev
NAME                       DESIRED   CURRENT   READY   AGE
pc-deployment-6696798b78   3         3         3       23s

# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6696798b78-d2c8n   1/1     Running   0          107s
pc-deployment-6696798b78-smpvp   1/1     Running   0          107s
pc-deployment-6696798b78-wvjd8   1/1     Running   0          107s

扩缩容

# 变更副本数量为5个
[root@k8s-master01 ~]# kubectl scale deploy pc-deployment --replicas=5  -n dev
deployment.apps/pc-deployment scaled

# 查看deployment
[root@k8s-master01 ~]# kubectl get deploy pc-deployment -n dev
NAME            READY   UP-TO-DATE   AVAILABLE   AGE
pc-deployment   5/5     5            5           2m

# 查看pod
[root@k8s-master01 ~]#  kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6696798b78-d2c8n   1/1     Running   0          4m19s
pc-deployment-6696798b78-jxmdq   1/1     Running   0          94s
pc-deployment-6696798b78-mktqv   1/1     Running   0          93s
pc-deployment-6696798b78-smpvp   1/1     Running   0          4m19s
pc-deployment-6696798b78-wvjd8   1/1     Running   0          4m19s

# 编辑deployment的副本数量,修改spec:replicas: 4即可
[root@k8s-master01 ~]# kubectl edit deploy pc-deployment -n dev
deployment.apps/pc-deployment edited

# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6696798b78-d2c8n   1/1     Running   0          5m23s
pc-deployment-6696798b78-jxmdq   1/1     Running   0          2m38s
pc-deployment-6696798b78-smpvp   1/1     Running   0          5m23s
pc-deployment-6696798b78-wvjd8   1/1     Running   0          5m23s
镜像更新

deployment支持两种更新策略:重建更新和滚动更新,可以通过strategy指定策略类型,支持两个属性:

strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:
  type:指定策略类型,支持两种策略
    Recreate:在创建出新的Pod之前会先杀掉所有已存在的Pod
    RollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod
  rollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:
    maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。
    max违规词汇: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。
重建更新
  1. 编辑pc-deployment.yaml,在spec节点下添加更新策略
spec:
  strategy: # 策略
    type: Recreate # 重建更新
  1. 创建deploy进行验证
# 变更镜像
[root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n dev
deployment.apps/pc-deployment image updated

# 观察升级过程
[root@k8s-master01 ~]#  kubectl get pods -n dev -w
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-5d89bdfbf9-65qcw   1/1     Running   0          31s
pc-deployment-5d89bdfbf9-w5nzv   1/1     Running   0          31s
pc-deployment-5d89bdfbf9-xpt7w   1/1     Running   0          31s

pc-deployment-5d89bdfbf9-xpt7w   1/1     Terminating   0          41s
pc-deployment-5d89bdfbf9-65qcw   1/1     Terminating   0          41s
pc-deployment-5d89bdfbf9-w5nzv   1/1     Terminating   0          41s

pc-deployment-675d469f8b-grn8z   0/1     Pending       0          0s
pc-deployment-675d469f8b-hbl4v   0/1     Pending       0          0s
pc-deployment-675d469f8b-67nz2   0/1     Pending       0          0s

pc-deployment-675d469f8b-grn8z   0/1     ContainerCreating   0          0s
pc-deployment-675d469f8b-hbl4v   0/1     ContainerCreating   0          0s
pc-deployment-675d469f8b-67nz2   0/1     ContainerCreating   0          0s

pc-deployment-675d469f8b-grn8z   1/1     Running             0          1s
pc-deployment-675d469f8b-67nz2   1/1     Running             0          1s
pc-deployment-675d469f8b-hbl4v   1/1     Running             0          2s
滚动更新
  1. 编辑pc-deployment.yaml,在spec节点下添加更新策略
spec:
  strategy: # 策略
    type: RollingUpdate # 滚动更新策略
    rollingUpdate:
      max违规词汇: 25% 
      maxUnavailable: 25%
  1. 创建deploy进行验证
# 变更镜像
[root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev 
deployment.apps/pc-deployment image updated

# 观察升级过程
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME                           READY   STATUS    RESTARTS   AGE
pc-deployment-c848d767-8rbzt   1/1     Running   0          31m
pc-deployment-c848d767-h4p68   1/1     Running   0          31m
pc-deployment-c848d767-hlmz4   1/1     Running   0          31m
pc-deployment-c848d767-rrqcn   1/1     Running   0          31m

pc-deployment-966bf7f44-226rx   0/1     Pending             0          0s
pc-deployment-966bf7f44-226rx   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-226rx   1/1     Running             0          1s
pc-deployment-c848d767-h4p68    0/1     Terminating         0          34m

pc-deployment-966bf7f44-cnd44   0/1     Pending             0          0s
pc-deployment-966bf7f44-cnd44   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-cnd44   1/1     Running             0          2s
pc-deployment-c848d767-hlmz4    0/1     Terminating         0          34m

pc-deployment-966bf7f44-px48p   0/1     Pending             0          0s
pc-deployment-966bf7f44-px48p   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-px48p   1/1     Running             0          0s
pc-deployment-c848d767-8rbzt    0/1     Terminating         0          34m

pc-deployment-966bf7f44-dkmqp   0/1     Pending             0          0s
pc-deployment-966bf7f44-dkmqp   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-dkmqp   1/1     Running             0          2s
pc-deployment-c848d767-rrqcn    0/1     Terminating         0          34m

# 至此,新版本的pod创建完毕,就版本的pod销毁完毕
# 中间过程是滚动进行的,也就是边销毁边创建
滚动更新的过程:

在这里插入图片描述

镜像更新中rs的变化

查看rs,发现原来的rs的依旧存在,只是pod数量变为了0,而后又新产生了一个rs,pod数量为4

其实这就是deployment能够进行版本回退的奥妙所在,后面会详细解释

[root@k8s-master01 ~]# kubectl get rs -n dev
NAME DESIRED CURRENT READY AGE
pc-deployment-6696798b78 0 0 0 7m37s
pc-deployment-6696798b11 0 0 0 5m37s
pc-deployment-c848d76789 4 4 4 72s

版本回退

deployment支持版本升级过程中的暂停、继续功能以及版本回退等诸多功能,下面具体来看.

kubectl rollout: 版本升级相关功能,支持下面的选项:

  • status 显示当前升级状态
  • history 显示 升级历史记录
  • pause 暂停版本升级过程
  • resume 继续已经暂停的版本升级过程
  • restart 重启版本升级过程
  • undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本)
# 查看当前升级版本的状态
[root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev
deployment "pc-deployment" successfully rolled out

# 查看升级历史记录
[root@k8s-master01 ~]# kubectl rollout history deploy pc-deployment -n dev
deployment.apps/pc-deployment
REVISION  CHANGE-CAUSE
1         kubectl create --filename=pc-deployment.yaml --record=true
2         kubectl create --filename=pc-deployment.yaml --record=true
3         kubectl create --filename=pc-deployment.yaml --record=true
# 可以发现有三次版本记录,说明完成过两次升级

# 版本回滚
# 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本,就是2版本
[root@k8s-master01 ~]# kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev
deployment.apps/pc-deployment rolled back

# 查看发现,通过nginx镜像版本可以发现到了第一版
[root@k8s-master01 ~]# kubectl get deploy -n dev -o wide
NAME            READY   UP-TO-DATE   AVAILABLE   AGE   CONTAINERS   IMAGES         
pc-deployment   4/4     4            4           74m   nginx        nginx:1.17.1   

# 查看rs,发现第一个rs中有4个pod运行,后面两个版本的rs中pod为运行
# 其实deployment之所以可是实现版本的回滚,就是通过记录下历史rs来实现的,
# 一旦想回滚到哪个版本,只需要将当前版本pod数量降为0,然后将回滚版本的pod提升为目标数量就可以了
[root@k8s-master01 ~]# kubectl get rs -n dev
NAME                       DESIRED   CURRENT   READY   AGE
pc-deployment-6696798b78   4         4         4       78m
pc-deployment-966bf7f44    0         0         0       37m
pc-deployment-c848d767     0         0         0       71m

金丝雀发布

Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。

比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。

# 更新deployment的版本,并配置暂停deployment
[root@k8s-master01 ~]#  kubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment  -n dev
deployment.apps/pc-deployment image updated
deployment.apps/pc-deployment paused

#观察更新状态
[root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev 
Waiting for deployment "pc-deployment" rollout to finish: 2 out of 4 new replicas have been updated...

# 监控更新的过程,可以看到已经新增了一个资源,但是并未按照预期的状态去删除一个旧的资源,就是因为使用了pause暂停命令

[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                       DESIRED   CURRENT   READY   AGE     CONTAINERS   IMAGES         
pc-deployment-5d89bdfbf9   3         3         3       19m     nginx        nginx:1.17.1   
pc-deployment-675d469f8b   0         0         0       14m     nginx        nginx:1.17.2   
pc-deployment-6c9f56fcfb   2         2         2       3m16s   nginx        nginx:1.17.4   
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-5d89bdfbf9-rj8sq   1/1     Running   0          7m33s
pc-deployment-5d89bdfbf9-ttwgg   1/1     Running   0          7m35s
pc-deployment-5d89bdfbf9-v4wvc   1/1     Running   0          7m34s
pc-deployment-6c9f56fcfb-996rt   1/1     Running   0          3m31s
pc-deployment-6c9f56fcfb-j2gtj   1/1     Running   0          3m31s

# 确保更新的pod没问题了,继续更新
[root@k8s-master01 ~]# kubectl rollout resume deploy pc-deployment -n dev
deployment.apps/pc-deployment resumed

# 查看最后的更新情况
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                       DESIRED   CURRENT   READY   AGE     CONTAINERS   IMAGES         
pc-deployment-5d89bdfbf9   0         0         0       21m     nginx        nginx:1.17.1   
pc-deployment-675d469f8b   0         0         0       16m     nginx        nginx:1.17.2   
pc-deployment-6c9f56fcfb   4         4         4       5m11s   nginx        nginx:1.17.4   

[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6c9f56fcfb-7bfwh   1/1     Running   0          37s
pc-deployment-6c9f56fcfb-996rt   1/1     Running   0          5m27s
pc-deployment-6c9f56fcfb-j2gtj   1/1     Running   0          5m27s
pc-deployment-6c9f56fcfb-rf84v   1/1     Running   0          37s
删除Deployment
# 删除deployment,其下的rs和pod也将被删除
[root@k8s-master01 ~]# kubectl delete -f pc-deployment.yaml
deployment.apps "pc-deployment" deleted

Horizontal Pod Autoscaler(HPA)

在前面的课程中,我们已经可以实现通过手工执行kubectl scale命令实现Pod扩容或缩容,但是这显然不符合Kubernetes的定位目标–自动化、智能化。 Kubernetes期望可以实现通过监测Pod的使用情况,实现pod数量的自动调整,于是就产生了Horizontal Pod Autoscaler(HPA)这种控制器。

HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析RC控制的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,这是HPA的实现原理。

在这里插入图片描述

接下来,我们来做一个实验

安装metrics-server

metrics-server可以用来收集集群中的资源使用情况

# 安装git
[root@k8s-master01 ~]# yum install git -y
# 获取metrics-server, 注意使用的版本
[root@k8s-master01 ~]# git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server
# 修改deployment, 注意修改的是镜像和初始化参数
[root@k8s-master01 ~]# cd /root/metrics-server/deploy/1.8+/
[root@k8s-master01 1.8+]# vim metrics-server-deployment.yaml
按图中添加下面选项
hostNetwork: true
image: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6
args:
- --kubelet-insecure-tls
- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP

在这里插入图片描述

# 安装metrics-server
[root@k8s-master01 1.8+]# kubectl apply -f ./

# 查看pod运行情况
[root@k8s-master01 1.8+]# kubectl get pod -n kube-system
metrics-server-6b976979db-2xwbj   1/1     Running   0          90s

# 使用kubectl top node 查看资源使用情况
[root@k8s-master01 1.8+]# kubectl top node
NAME           CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%
k8s-master01   289m         14%    1582Mi          54%       
k8s-node01     81m          4%     1195Mi          40%       
k8s-node02     72m          3%     1211Mi          41%  
[root@k8s-master01 1.8+]# kubectl top pod -n kube-system
NAME                              CPU(cores)   MEMORY(bytes)
coredns-6955765f44-7ptsb          3m           9Mi
coredns-6955765f44-vcwr5          3m           8Mi
etcd-master                       14m          145Mi
...
# 至此,metrics-server安装完成

准备deployment和servie

创建pc-hpa-pod.yaml文件,内容如下:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
  namespace: dev
spec:
  strategy: # 策略
    type: RollingUpdate # 滚动更新策略
  replicas: 1
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        resources: # 资源配额
          limits:  # 限制资源(上限)
            cpu: "1" # CPU限制,单位是core数
          requests: # 请求资源(下限)
            cpu: "100m"  # CPU限制,单位是core数
# 创建deployment
[root@k8s-master01 1.8+]# kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev
# 创建service
[root@k8s-master01 1.8+]# kubectl expose deployment nginx --type=NodePort --port=80 -n dev
# 查看
[root@k8s-master01 1.8+]# kubectl get deployment,pod,svc -n dev
NAME                    READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/nginx   1/1     1            1           47s

NAME                         READY   STATUS    RESTARTS   AGE
pod/nginx-7df9756ccc-bh8dr   1/1     Running   0          47s

NAME            TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
service/nginx   NodePort   10.101.18.29   <none>        80:31830/TCP   35s

部署HPA

创建pc-hpa.yaml文件,内容如下:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: pc-hpa
  namespace: dev
spec:
  minReplicas: 1  #最小pod数量
  maxReplicas: 10 #最大pod数量
  targetCPUUtilizationPercentage: 3 # CPU使用率指标
  scaleTargetRef:   # 指定要控制的nginx信息
    apiVersion:  /v1
    kind: Deployment
    name: nginx
# 创建hpa
[root@k8s-master01 1.8+]# kubectl create -f pc-hpa.yaml
horizontalpodautoscaler.autoscaling/pc-hpa created

# 查看hpa
    [root@k8s-master01 1.8+]# kubectl get hpa -n dev
NAME     REFERENCE          TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
pc-hpa   Deployment/nginx   0%/3%     1         10        1          62s

测试

使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化

hpa变化

[root@k8s-master01 ~]# kubectl get hpa -n dev -w
NAME   REFERENCE      TARGETS  MINPODS  MAXPODS  REPLICAS  AGE
pc-hpa  Deployment/nginx  0%/3%   1     10     1      4m11s
pc-hpa  Deployment/nginx  0%/3%   1     10     1      5m19s
pc-hpa  Deployment/nginx  22%/3%   1     10     1      6m50s
pc-hpa  Deployment/nginx  22%/3%   1     10     4      7m5s
pc-hpa  Deployment/nginx  22%/3%   1     10     8      7m21s
pc-hpa  Deployment/nginx  6%/3%   1     10     8      7m51s
pc-hpa  Deployment/nginx  0%/3%   1     10     8      9m6s
pc-hpa  Deployment/nginx  0%/3%   1     10     8      13m
pc-hpa  Deployment/nginx  0%/3%   1     10     1      14m

deployment变化

[root@k8s-master01 ~]# kubectl get deployment -n dev -w
NAME    READY   UP-TO-DATE   AVAILABLE   AGE
nginx   1/1     1            1           11m
nginx   1/4     1            1           13m
nginx   1/4     1            1           13m
nginx   1/4     1            1           13m
nginx   1/4     4            1           13m
nginx   1/8     4            1           14m
nginx   1/8     4            1           14m
nginx   1/8     4            1           14m
nginx   1/8     8            1           14m
nginx   2/8     8            2           14m
nginx   3/8     8            3           14m
nginx   4/8     8            4           14m
nginx   5/8     8            5           14m
nginx   6/8     8            6           14m
nginx   7/8     8            7           14m
nginx   8/8     8            8           15m
nginx   8/1     8            8           20m
nginx   8/1     8            8           20m
nginx   1/1     1            1           20m

pod变化

[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME                     READY   STATUS    RESTARTS   AGE
nginx-7df9756ccc-bh8dr   1/1     Running   0          11m
nginx-7df9756ccc-cpgrv   0/1     Pending   0          0s
nginx-7df9756ccc-8zhwk   0/1     Pending   0          0s
nginx-7df9756ccc-rr9bn   0/1     Pending   0          0s
nginx-7df9756ccc-cpgrv   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-8zhwk   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-rr9bn   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-m9gsj   0/1     Pending             0          0s
nginx-7df9756ccc-g56qb   0/1     Pending             0          0s
nginx-7df9756ccc-sl9c6   0/1     Pending             0          0s
nginx-7df9756ccc-fgst7   0/1     Pending             0          0s
nginx-7df9756ccc-g56qb   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-m9gsj   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-sl9c6   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-fgst7   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-8zhwk   1/1     Running             0          19s
nginx-7df9756ccc-rr9bn   1/1     Running             0          30s
nginx-7df9756ccc-m9gsj   1/1     Running             0          21s
nginx-7df9756ccc-cpgrv   1/1     Running             0          47s
nginx-7df9756ccc-sl9c6   1/1     Running             0          33s
nginx-7df9756ccc-g56qb   1/1     Running             0          48s
nginx-7df9756ccc-fgst7   1/1     Running             0          66s
nginx-7df9756ccc-fgst7   1/1     Terminating         0          6m50s
nginx-7df9756ccc-8zhwk   1/1     Terminating         0          7m5s
nginx-7df9756ccc-cpgrv   1/1     Terminating         0          7m5s
nginx-7df9756ccc-g56qb   1/1     Terminating         0          6m50s
nginx-7df9756ccc-rr9bn   1/1     Terminating         0          7m5s
nginx-7df9756ccc-m9gsj   1/1     Terminating         0          6m50s
nginx-7df9756ccc-sl9c6   1/1     Terminating         0          6m50s

DaemonSet(DS)

DaemonSet类型的控制器可以保证在集群中的每一台(或指定)节点上都运行一个副本。一般适用于日志收集、节点监控等场景。也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。

在这里插入图片描述

DaemonSet控制器的特点:

  • 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上
  • 当节点从集群中移除时,Pod 也就被垃圾回收了

下面先来看下DaemonSet的资源清单文件

apiVersion: apps/v1 # 版本号
kind: DaemonSet # 类型       
metadata: # 元数据
  name: # rs名称 
  namespace: # 所属命名空间 
  labels: #标签
    controller: daemonset
spec: # 详情描述
  revisionHistoryLimit: 3 # 保留历史版本
  updateStrategy: # 更新策略
    type: RollingUpdate # 滚动更新策略
    rollingUpdate: # 滚动更新
      maxUnavailable: 1 # 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数
  selector: # 选择器,通过它指定该控制器管理哪些pod
    matchLabels:      # Labels匹配规则
      app: nginx-pod
    matchExpressions: # Expressions匹配规则
      - {key: app, operator: In, values: [nginx-pod]}
  template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80

创建pc-daemonset.yaml,内容如下:

apiVersion: apps/v1
kind: DaemonSet      
metadata:
  name: pc-daemonset
  namespace: dev
spec: 
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
# 创建daemonset
[root@k8s-master01 ~]# kubectl create -f  pc-daemonset.yaml
daemonset.apps/pc-daemonset created

# 查看daemonset
[root@k8s-master01 ~]#  kubectl get ds -n dev -o wide
NAME        DESIRED  CURRENT  READY  UP-TO-DATE  AVAILABLE   AGE   CONTAINERS   IMAGES         
pc-daemonset   2        2        2      2           2        24s   nginx        nginx:1.17.1   

# 查看pod,发现在每个Node上都运行一个pod
[root@k8s-master01 ~]#  kubectl get pods -n dev -o wide
NAME                 READY   STATUS    RESTARTS   AGE   IP            NODE    
pc-daemonset-9bck8   1/1     Running   0          37s   10.244.1.43   node1     
pc-daemonset-k224w   1/1     Running   0          37s   10.244.2.74   node2      

# 删除daemonset
[root@k8s-master01 ~]# kubectl delete -f pc-daemonset.yaml
daemonset.apps "pc-daemonset" deleted

Job

Job,主要用于负责**批量处理(一次要处理指定数量任务)短暂的一次性(每个任务仅运行一次就结束)**任务。Job特点如下:

  • 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量
  • 当成功结束的pod达到指定的数量时,Job将完成执行

在这里插入图片描述

Job的资源清单文件:

apiVersion: batch/v1 # 版本号
kind: Job # 类型       
metadata: # 元数据
  name: # rs名称 
  namespace: # 所属命名空间 
  labels: #标签
    controller: job
spec: # 详情描述
  completions: 1 # 指定job需要成功运行Pods的次数。默认值: 1
  parallelism: 1 # 指定job在任一时刻应该并发运行Pods的数量。默认值: 1
  activeDeadlineSeconds: 30 # 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。
  backoffLimit: 6 # 指定job失败后进行重试的次数。默认是6
  manualSelector: true # 是否可以使用selector选择器选择pod,默认是false
  selector: # 选择器,通过它指定该控制器管理哪些pod
    matchLabels:      # Labels匹配规则
      app: counter-pod
    matchExpressions: # Expressions匹配规则
      - {key: app, operator: In, values: [counter-pod]}
  template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本
    metadata:
      labels:
        app: counter-pod
    spec:
      restartPolicy: Never # 重启策略只能设置为Never或者OnFailure
      containers:
      - name: counter
        image: busybox:1.30
        command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"]
关于重启策略设置的说明:
    如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变
    如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1
    如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always

创建pc-job.yaml,内容如下:

apiVersion: batch/v1
kind: Job      
metadata:
  name: pc-job
  namespace: dev
spec:
  manualSelector: true
  selector:
    matchLabels:
      app: counter-pod
  template:
    metadata:
      labels:
        app: counter-pod
    spec:
      restartPolicy: Never
      containers:
      - name: counter
        image: busybox:1.30
        command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"]
# 创建job
[root@k8s-master01 ~]# kubectl create -f pc-job.yaml
job.batch/pc-job created

# 查看job
[root@k8s-master01 ~]# kubectl get job -n dev -o wide  -w
NAME     COMPLETIONS   DURATION   AGE   CONTAINERS   IMAGES         SELECTOR
pc-job   0/1           21s        21s   counter      busybox:1.30   app=counter-pod
pc-job   1/1           31s        79s   counter      busybox:1.30   app=counter-pod

# 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME           READY   STATUS     RESTARTS      AGE
pc-job-rxg96   1/1     Running     0            29s
pc-job-rxg96   0/1     Completed   0            33s

# 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项
#  completions: 6 # 指定job需要成功运行Pods的次数为6
#  parallelism: 3 # 指定job并发运行Pods的数量为3
#  然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME           READY   STATUS    RESTARTS   AGE
pc-job-684ft   1/1     Running   0          5s
pc-job-jhj49   1/1     Running   0          5s
pc-job-pfcvh   1/1     Running   0          5s
pc-job-684ft   0/1     Completed   0          11s
pc-job-v7rhr   0/1     Pending     0          0s
pc-job-v7rhr   0/1     Pending     0          0s
pc-job-v7rhr   0/1     ContainerCreating   0          0s
pc-job-jhj49   0/1     Completed           0          11s
pc-job-fhwf7   0/1     Pending             0          0s
pc-job-fhwf7   0/1     Pending             0          0s
pc-job-pfcvh   0/1     Completed           0          11s
pc-job-5vg2j   0/1     Pending             0          0s
pc-job-fhwf7   0/1     ContainerCreating   0          0s
pc-job-5vg2j   0/1     Pending             0          0s
pc-job-5vg2j   0/1     ContainerCreating   0          0s
pc-job-fhwf7   1/1     Running             0          2s
pc-job-v7rhr   1/1     Running             0          2s
pc-job-5vg2j   1/1     Running             0          3s
pc-job-fhwf7   0/1     Completed           0          12s
pc-job-v7rhr   0/1     Completed           0          12s
pc-job-5vg2j   0/1     Completed           0          12s

# 删除job
[root@k8s-master01 ~]# kubectl delete -f pc-job.yaml
job.batch "pc-job" deleted

CronJob(CJ)

CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。

在这里插入图片描述

CronJob的资源清单文件:

apiVersion: batch/v1beta1 # 版本号
kind: CronJob # 类型       
metadata: # 元数据
  name: # rs名称 
  namespace: # 所属命名空间 
  labels: #标签
    controller: cronjob
spec: # 详情描述
  schedule: # cron格式的作业调度运行时间点,用于控制任务在什么时间执行
  concurrencyPolicy: # 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业
  failedJobHistoryLimit: # 为失败的任务执行保留的历史记录数,默认为1
  successfulJobHistoryLimit: # 为成功的任务执行保留的历史记录数,默认为3
  startingDeadlineSeconds: # 启动作业错误的超时时长
  jobTemplate: # job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义
    metadata:
    spec:
      completions: 1
      parallelism: 1
      activeDeadlineSeconds: 30
      backoffLimit: 6
      manualSelector: true
      selector:
        matchLabels:
          app: counter-pod
        matchExpressions: 规则
          - {key: app, operator: In, values: [counter-pod]}
      template:
        metadata:
          labels:
            app: counter-pod
        spec:
          restartPolicy: Never 
          containers:
          - name: counter
            image: busybox:1.30
            command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"]
需要重点解释的几个选项:
schedule: cron表达式,用于指定任务的执行时间
    */1    *      *    *     *
    <分钟> <小时> <> <月份> <星期>

    分钟 值从 059.
    小时 值从 023.
    日 值从 131.
    月 值从 112.
    星期 值从 06, 0 代表星期日
    多个时间可以用逗号隔开; 范围可以用连字符给出;*可以作为通配符; /表示每...
concurrencyPolicy:
    Allow:   允许Jobs并发运行(默认)
    Forbid:  禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行
    Replace: 替换,取消当前正在运行的作业并用新作业替换它

创建pc-cronjob.yaml,内容如下:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
  name: pc-cronjob
  namespace: dev
  labels:
    controller: cronjob
spec:
  schedule: "*/1 * * * *"
  jobTemplate:
    metadata:
    spec:
      template:
        spec:
          restartPolicy: Never
          containers:
          - name: counter
            image: busybox:1.30
            command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"]
# 创建cronjob
[root@k8s-master01 ~]# kubectl create -f pc-cronjob.yaml
cronjob.batch/pc-cronjob created

# 查看cronjob
[root@k8s-master01 ~]# kubectl get cronjobs -n dev
NAME         SCHEDULE      SUSPEND   ACTIVE   LAST SCHEDULE   AGE
pc-cronjob   */1 * * * *   False     0        <none>          6s

# 查看job
[root@k8s-master01 ~]# kubectl get jobs -n dev
NAME                    COMPLETIONS   DURATION   AGE
pc-cronjob-1592587800   1/1           28s        3m26s
pc-cronjob-1592587860   1/1           28s        2m26s
pc-cronjob-1592587920   1/1           28s        86s

# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
pc-cronjob-1592587800-x4tsm   0/1     Completed   0          2m24s
pc-cronjob-1592587860-r5gv4   0/1     Completed   0          84s
pc-cronjob-1592587920-9dxxq   1/1     Running     0          24s


# 删除cronjob
[root@k8s-master01 ~]# kubectl  delete -f pc-cronjob.yaml
cronjob.batch "pc-cronjob" deleted

Service详解

Service介绍

在kubernetes中,pod是应用程序的载体,我们可以通过pod的ip来访问应用程序,但是pod的ip地址不是固定的,这也就意味着不方便直接采用pod的ip对服务进行访问。

为了解决这个问题,kubernetes提供了Service资源,Service会对提供同一个服务的多个pod进行聚合,并且提供一个统一的入口地址。通过访问Service的入口地址就能访问到后面的pod服务。

在这里插入图片描述

Service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个Node节点上都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,而kube-proxy会基于监听的机制发现这种Service的变动,然后它会将最新的Service信息转换成对应的访问规则。

在这里插入图片描述

# 10.97.97.97:80 是service提供的访问入口
# 当访问这个入口的时候,可以发现后面有三个pod的服务在等待调用,
# kube-proxy会基于rr(轮询)的策略,将请求分发到其中一个pod上去
# 这个规则会同时在集群内的所有节点上都生成,所以在任何一个节点上,都可以访问。
[root@node1 ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

kube-proxy目前支持三种工作模式:

userspace 模式

userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被Iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。 该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。

在这里插入图片描述

iptables 模式

iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod IP。 该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端Pod不可用时也无法进行重试。

在这里插入图片描述

7.1.3 ipvs 模式

ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。

在这里插入图片描述

# 此模式必须安装ipvs内核模块,否则会降级为iptables
# 开启ipvs
[root@k8s-master01 ~]# kubectl edit cm kube-proxy -n kube-system
# 修改mode: "ipvs"
[root@k8s-master01 ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system
[root@node1 ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

7.2 Service类型

Service的资源清单文件:

kind: Service  # 资源类型
apiVersion: v1  # 资源版本
metadata: # 元数据
  name: service # 资源名称
  namespace: dev # 命名空间
spec: # 描述
  selector: # 标签选择器,用于确定当前service代理哪些pod
    app: nginx
  type: # Service类型,指定service的访问方式
  clusterIP:  # 虚拟服务的ip地址
  sessionAffinity: # session亲和性,支持ClientIP、None两个选项
  ports: # 端口信息
    - protocol: TCP 
      port: 3017  # service端口
      targetPort: 5003 # pod端口
      nodePort: 31122 # 主机端口
  • ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问
  • NodePort:将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务
  • LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
  • ExternalName: 把集群外部的服务引入集群内部,直接使用

Service使用

实验环境准备

在使用service之前,首先利用Deployment创建出3个pod,注意要为pod设置app=nginx-pod的标签

创建deployment.yaml,内容如下:

apiVersion: apps/v1
kind: Deployment      
metadata:
  name: pc-deployment
  namespace: dev
spec: 
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80
[root@k8s-master01 ~]# kubectl create -f deployment.yaml
deployment.apps/pc-deployment created

# 查看pod详情
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide --show-labels
NAME                             READY   STATUS     IP            NODE     LABELS
pc-deployment-66cb59b984-8p84h   1/1     Running    10.244.1.39   node1    app=nginx-pod
pc-deployment-66cb59b984-vx8vx   1/1     Running    10.244.2.33   node2    app=nginx-pod
pc-deployment-66cb59b984-wnncx   1/1     Running    10.244.1.40   node1    app=nginx-pod

# 为了方便后面的测试,修改下三台nginx的index.html页面(三台修改的IP地址不一致)
# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
# echo "10.244.1.39" > /usr/share/nginx/html/index.html

#修改完毕之后,访问测试
[root@k8s-master01 ~]# curl 10.244.1.39
10.244.1.39
[root@k8s-master01 ~]# curl 10.244.2.33
10.244.2.33
[root@k8s-master01 ~]# curl 10.244.1.40
10.244.1.40

ClusterIP类型的Service

创建service-clusterip.yaml文件

apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: 10.97.97.97 # service的ip地址,如果不写,默认会生成一个
  type: ClusterIP
  ports:
  - port: 80  # Service端口       
    targetPort: 80 # pod端口
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-clusterip.yaml
service/service-clusterip created

# 查看service
[root@k8s-master01 ~]# kubectl get svc -n dev -o wide
NAME                TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)   AGE   SELECTOR
service-clusterip   ClusterIP   10.97.97.97   <none>        80/TCP    13s   app=nginx-pod

# 查看service的详细信息
# 在这里有一个Endpoints列表,里面就是当前service可以负载到的服务入口
[root@k8s-master01 ~]# kubectl describe svc service-clusterip -n dev
Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP:                10.97.97.97
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity:  None
Events:            <none>

# 查看ipvs的映射规则
[root@k8s-master01 ~]# ipvsadm -Ln
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

# 访问10.97.97.97:80观察效果
[root@k8s-master01 ~]# curl 10.97.97.97:80
10.244.2.33

Endpoint

Endpoint是kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址,它是根据service配置文件中selector描述产生的。

一个Service由一组Pod组成,这些Pod通过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换句话说,service和pod之间的联系是通过endpoints实现的。
在这里插入图片描述

负载分发策略

对Service的访问被分发到了后端的Pod上去,目前kubernetes提供了两种负载分发策略:

  • 如果不定义,默认使用kube-proxy的策略,比如随机、轮询
  • 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到固定的一个Pod上,此模式可以使在spec中添加sessionAffinity:ClientIP选项
# 查看ipvs的映射规则【rr 轮询】
[root@k8s-master01 ~]# ipvsadm -Ln
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

# 循环访问测试
[root@k8s-master01 ~]# while true;do curl 10.97.97.97:80; sleep 5; done;
10.244.1.40
10.244.1.39
10.244.2.33
10.244.1.40
10.244.1.39
10.244.2.33

# 修改分发策略----sessionAffinity:ClientIP

# 查看ipvs规则【persistent 代表持久】
[root@k8s-master01 ~]# ipvsadm -Ln
TCP  10.97.97.97:80 rr persistent 10800
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

# 循环访问测试
[root@k8s-master01 ~]# while true;do curl 10.97.97.97; sleep 5; done;
10.244.2.33
10.244.2.33
10.244.2.33
  
# 删除service
[root@k8s-master01 ~]# kubectl delete -f service-clusterip.yaml
service "service-clusterip" deleted

HeadLiness类型的Service

在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,kubernetes提供了HeadLiness Service,这类Service不会分配Cluster IP,如果想要访问service,只能通过service的域名进行查询。

创建service-headliness.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-headliness
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None # 将clusterIP设置为None,即可创建headliness Service
  type: ClusterIP
  ports:
  - port: 80    
    targetPort: 80
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-headliness.yaml
service/service-headliness created

# 获取service, 发现CLUSTER-IP未分配
[root@k8s-master01 ~]# kubectl get svc service-headliness -n dev -o wide
NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE   SELECTOR
service-headliness   ClusterIP   None         <none>        80/TCP    11s   app=nginx-pod

# 查看service详情
[root@k8s-master01 ~]# kubectl describe svc service-headliness  -n dev
Name:              service-headliness
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP:                None
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity:  None
Events:            <none>

# 查看域名的解析情况
[root@k8s-master01 ~]# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
/ # cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local

[root@k8s-master01 ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.40
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.39
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.33

NodePort类型的Service

在之前的样例中,创建的Service的ip地址只有集群内部才可以访问,如果希望将Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。

在这里插入图片描述

创建service-nodeport.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-nodeport
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: NodePort # service类型
  ports:
  - port: 80
    nodePort: 30002 # 指定绑定的node的端口(默认的取值范围是:30000-32767), 如果不指定,会默认分配
    targetPort: 80
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-nodeport.yaml
service/service-nodeport created

# 查看service
[root@k8s-master01 ~]# kubectl get svc -n dev -o wide
NAME               TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)       SELECTOR
service-nodeport   NodePort   10.105.64.191   <none>        80:30002/TCP  app=nginx-pod

# 接下来可以通过电脑主机的浏览器去访问集群中任意一个nodeip的30002端口,即可访问到pod

LoadBalancer类型的Service

LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。

在这里插入图片描述

ExternalName类型的Service

ExternalName类型的Service用于引入集群外部的服务,它通过externalName属性指定外部一个服务的地址,然后在集群内部访问此service就可以访问到外部的服务了。
在这里插入图片描述

apiVersion: v1
kind: Service
metadata:
  name: service-externalname
  namespace: dev
spec:
  type: ExternalName # service类型
  externalName: www.baidu.com  #改成ip地址也可以
# 创建service
[root@k8s-master01 ~]# kubectl  create -f service-externalname.yaml
service/service-externalname created

# 域名解析
[root@k8s-master01 ~]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local
service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com.
www.baidu.com.          30      IN      CNAME   www.a.shifen.com.
www.a.shifen.com.       30      IN      A       39.156.66.18
www.a.shifen.com.       30      IN      A       39.156.66.14

Ingress介绍

在前面课程中已经提到,Service对集群之外暴露服务的主要方式有两种:NotePort和LoadBalancer,但是这两种方式,都有一定的缺点:

  • NodePort方式的缺点是会占用很多集群机器的端口,那么当集群服务变多的时候,这个缺点就愈发明显
  • LB方式的缺点是每个service需要一个LB,浪费、麻烦,并且需要kubernetes之外设备的支持

基于这种现状,kubernetes提供了Ingress资源对象,Ingress只需要一个NodePort或者一个LB就可以满足暴露多个Service的需求。工作机制大致如下图表示:

在这里插入图片描述
实际上,Ingress相当于一个7层的负载均衡器,是kubernetes对反向代理的一个抽象,它的工作原理类似于Nginx,可以理解成在Ingress里建立诸多映射规则,Ingress Controller通过监听这些配置规则并转化成Nginx的反向代理配置 , 然后对外部提供服务。在这里有两个核心概念:

  • ingress:kubernetes中的一个对象,作用是定义请求如何转发到service的规则
  • ingress controller:具体实现反向代理及负载均衡的程序,对ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现方式有很多,比如Nginx, Contour, Haproxy等等

Ingress(以Nginx为例)的工作原理如下:

  1. 用户编写Ingress规则,说明哪个域名对应kubernetes集群中的哪个Service
  2. Ingress控制器动态感知Ingress服务规则的变化,然后生成一段对应的Nginx反向代理配置
  3. Ingress控制器会将生成的Nginx配置写入到一个运行着的Nginx服务中,并动态更新
  4. 到此为止,其实真正在工作的就是一个Nginx了,内部配置了用户定义的请求转发规则

在这里插入图片描述

Ingress使用

环境准备 搭建ingress环境

# 创建文件夹
[root@k8s-master01 ~]# mkdir ingress-controller
[root@k8s-master01 ~]# cd ingress-controller/

# 获取ingress-nginx,本次案例使用的是0.30版本
[root@k8s-master01 ingress-controller]# wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
[root@k8s-master01 ingress-controller]# wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/baremetal/service-nodeport.yaml

# 修改mandatory.yaml文件中的仓库
# 修改quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.30.0
# 为quay-mirror.qiniu.com/kubernetes-ingress-controller/nginx-ingress-controller:0.30.0
# 创建ingress-nginx
[root@k8s-master01 ingress-controller]# kubectl apply -f ./

# 查看ingress-nginx
[root@k8s-master01 ingress-controller]# kubectl get pod -n ingress-nginx
NAME                                           READY   STATUS    RESTARTS   AGE
pod/nginx-ingress-controller-fbf967dd5-4qpbp   1/1     Running   0          12h

# 查看service
[root@k8s-master01 ingress-controller]# kubectl get svc -n ingress-nginx
NAME            TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx   NodePort   10.98.75.163   <none>        80:32240/TCP,443:31335/TCP   11h

准备service和pod

为了后面的实验比较方便,创建如下图所示的模型

在这里插入图片描述

创建tomcat-nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80

---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: tomcat-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: tomcat-pod
  template:
    metadata:
      labels:
        app: tomcat-pod
    spec:
      containers:
      - name: tomcat
        image: tomcat:8.5-jre10-slim
        ports:
        - containerPort: 8080

---

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80

---

apiVersion: v1
kind: Service
metadata:
  name: tomcat-service
  namespace: dev
spec:
  selector:
    app: tomcat-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 8080
    targetPort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f tomcat-nginx.yaml

# 查看
[root@k8s-master01 ~]# kubectl get svc -n dev
NAME             TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
nginx-service    ClusterIP   None         <none>        80/TCP     48s
tomcat-service   ClusterIP   None         <none>        8080/TCP   48s

7.5.3 Http代理

创建ingress-http.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: ingress-http
  namespace: dev
spec:
  rules:
  - host: nginx.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-service
          servicePort: 80
  - host: tomcat.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: tomcat-service
          servicePort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f ingress-http.yaml
ingress.extensions/ingress-http created

# 查看
[root@k8s-master01 ~]# kubectl get ing ingress-http -n dev
NAME           HOSTS                                  ADDRESS   PORTS   AGE
ingress-http   nginx.itheima.com,tomcat.itheima.com             80      22s

# 查看详情
[root@k8s-master01 ~]# kubectl describe ing ingress-http  -n dev
...
Rules:
Host                Path  Backends
----                ----  --------
nginx.itheima.com   / nginx-service:80 (10.244.1.96:80,10.244.1.97:80,10.244.2.112:80)
tomcat.itheima.com  / tomcat-service:8080(10.244.1.94:8080,10.244.1.95:8080,10.244.2.111:8080)
...

# 接下来,在本地电脑上配置host文件,解析上面的两个域名到192.168.109.100(master)上
# 然后,就可以分别访问tomcat.itheima.com:32240  和  nginx.itheima.com:32240 查看效果了

Https代理

创建证书
# 生成证书
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=itheima.com"

# 创建密钥
kubectl create secret tls tls-secret --key tls.key --cert tls.crt

创建ingress-https.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: ingress-https
  namespace: dev
spec:
  tls:
    - hosts:
      - nginx.itheima.com
      - tomcat.itheima.com
      secretName: tls-secret # 指定秘钥
  rules:
  - host: nginx.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-service
          servicePort: 80
  - host: tomcat.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: tomcat-service
          servicePort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f ingress-https.yaml
ingress.extensions/ingress-https created

# 查看
[root@k8s-master01 ~]# kubectl get ing ingress-https -n dev
NAME            HOSTS                                  ADDRESS         PORTS     AGE
ingress-https   nginx.itheima.com,tomcat.itheima.com   10.104.184.38   80, 443   2m42s

# 查看详情
[root@k8s-master01 ~]# kubectl describe ing ingress-https -n dev
...
TLS:
  tls-secret terminates nginx.itheima.com,tomcat.itheima.com
Rules:
Host              Path Backends
----              ---- --------
nginx.itheima.com  /  nginx-service:80 (10.244.1.97:80,10.244.1.98:80,10.244.2.119:80)
tomcat.itheima.com /  tomcat-service:8080(10.244.1.99:8080,10.244.2.117:8080,10.244.2.120:8080)
...

# 下面可以通过浏览器访问https://nginx.itheima.com:31335 和 https://tomcat.itheima.com:31335来查看了

数据存储

在前面已经提到,容器的生命周期可能很短,会被频繁地创建和销毁。那么容器在销毁时,保存在容器中的数据也会被清除。这种结果对用户来说,在某些情况下是不乐意看到的。为了持久化保存容器的数据,kubernetes引入了Volume的概念。

Volume是Pod中能够被多个容器访问的共享目录,它被定义在Pod上,然后被一个Pod里的多个容器挂载到具体的文件目录下,kubernetes通过Volume实现同一个Pod中不同容器之间的数据共享以及数据的持久化存储。Volume的生命容器不与Pod中单个容器的生命周期相关,当容器终止或者重启时,Volume中的数据也不会丢失。

kubernetes的Volume支持多种类型,比较常见的有下面几个:

  • 简单存储:EmptyDir、HostPath、NFS
  • 高级存储:PV、PVC
  • 配置存储:ConfigMap、Secret

基本存储

EmptyDir

EmptyDir是最基础的Volume类型,一个EmptyDir就是Host上的一个空目录。

EmptyDir是在Pod被分配到Node时创建的,它的初始内容为空,并且无须指定宿主机上对应的目录文件,因为kubernetes会自动分配一个目录,当Pod销毁时, EmptyDir中的数据也会被永久删除。 EmptyDir用途如下:

  • 临时空间,例如用于某些应用程序运行时所需的临时目录,且无须永久保留
  • 一个容器需要从另一个容器中获取数据的目录(多容器共享目录)

接下来,通过一个容器之间文件共享的案例来使用一下EmptyDir。

在一个Pod中准备两个容器nginx和busybox,然后声明一个Volume分别挂在到两个容器的目录中,然后nginx容器负责向Volume中写日志,busybox中通过命令将日志内容读到控制台。

在这里插入图片描述

创建一个volume-emptydir.yaml

apiVersion: v1
kind: Pod
metadata:
  name: volume-emptydir
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - containerPort: 80
    volumeMounts:  # 将logs-volume挂在到nginx容器中,对应的目录为 /var/log/nginx
    - name: logs-volume
      mountPath: /var/log/nginx
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","tail -f /logs/access.log"] # 初始命令,动态读取指定文件中内容
    volumeMounts:  # 将logs-volume 挂在到busybox容器中,对应的目录为 /logs
    - name: logs-volume
      mountPath: /logs
  volumes: # 声明volume, name为logs-volume,类型为emptyDir
  - name: logs-volume
    emptyDir: {}
# 创建Pod
[root@k8s-master01 ~]# kubectl create -f volume-emptydir.yaml
pod/volume-emptydir created

# 查看pod
[root@k8s-master01 ~]# kubectl get pods volume-emptydir -n dev -o wide
NAME                  READY   STATUS    RESTARTS   AGE      IP       NODE   ...... 
volume-emptydir       2/2     Running   0          97s   10.42.2.9   node1  ......

# 通过podIp访问nginx
[root@k8s-master01 ~]# curl 10.42.2.9
......

# 通过kubectl logs命令查看指定容器的标准输出
[root@k8s-master01 ~]# kubectl logs -f volume-emptydir -n dev -c busybox
10.42.1.0 - - [27/Jun/2021:15:08:54 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.29.0" "-"

HostPath

上节课提到,EmptyDir中数据不会被持久化,它会随着Pod的结束而销毁,如果想简单的将数据持久化到主机中,可以选择HostPath。

HostPath就是将Node主机中一个实际目录挂在到Pod中,以供容器使用,这样的设计就可以保证Pod销毁了,但是数据依据可以存在于Node主机上。

在这里插入图片描述

创建一个volume-hostpath.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: volume-hostpath
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - containerPort: 80
    volumeMounts:
    - name: logs-volume
      mountPath: /var/log/nginx
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","tail -f /logs/access.log"]
    volumeMounts:
    - name: logs-volume
      mountPath: /logs
  volumes:
  - name: logs-volume
    hostPath: 
      path: /root/logs
      type: DirectoryOrCreate  # 目录存在就使用,不存在就先创建后使用
关于type的值的一点说明:
    DirectoryOrCreate 目录存在就使用,不存在就先创建后使用
    Directory   目录必须存在
    FileOrCreate  文件存在就使用,不存在就先创建后使用
    File 文件必须存在 
    Socket  unix套接字必须存在
    CharDevice  字符设备必须存在
    BlockDevice 块设备必须存在
# 创建Pod
[root@k8s-master01 ~]# kubectl create -f volume-hostpath.yaml
pod/volume-hostpath created

# 查看Pod
[root@k8s-master01 ~]# kubectl get pods volume-hostpath -n dev -o wide
NAME                  READY   STATUS    RESTARTS   AGE   IP             NODE   ......
pod-volume-hostpath   2/2     Running   0          16s   10.42.2.10     node1  ......

#访问nginx
[root@k8s-master01 ~]# curl 10.42.2.10

[root@k8s-master01 ~]# kubectl logs -f volume-emptydir -n dev -c busybox

# 接下来就可以去host的/root/logs目录下查看存储的文件了
###  注意: 下面的操作需要到Pod所在的节点运行(案例中是node1)
[root@node1 ~]# ls /root/logs/
access.log  error.log

# 同样的道理,如果在此目录下创建一个文件,到容器中也是可以看到的

NFS

HostPath可以解决数据持久化的问题,但是一旦Node节点故障了,Pod如果转移到了别的节点,又会出现问题了,此时需要准备单独的网络存储系统,比较常用的用NFS、CIFS。

NFS是一个网络文件存储系统,可以搭建一台NFS服务器,然后将Pod中的存储直接连接到NFS系统上,这样的话,无论Pod在节点上怎么转移,只要Node跟NFS的对接没问题,数据就可以成功访问。

在这里插入图片描述

1)首先要准备nfs的服务器,这里为了简单,直接是master节点做nfs服务器

# 在nfs上安装nfs服务
[root@nfs ~]# yum install nfs-utils -y

# 准备一个共享目录
[root@nfs ~]# mkdir /root/data/nfs -pv

# 将共享目录以读写权限暴露给192.168.5.0/24网段中的所有主机
[root@nfs ~]# vim /etc/exports
[root@nfs ~]# more /etc/exports
/root/data/nfs     192.168.5.0/24(rw,no_root_squash)

# 启动nfs服务
[root@nfs ~]# systemctl restart nfs

2)接下来,要在的每个node节点上都安装下nfs,这样的目的是为了node节点可以驱动nfs设备

# 在node上安装nfs服务,注意不需要启动
[root@k8s-master01 ~]# yum install nfs-utils -y

3)接下来,就可以编写pod的配置文件了,创建volume-nfs.yaml

apiVersion: v1
kind: Pod
metadata:
  name: volume-nfs
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - containerPort: 80
    volumeMounts:
    - name: logs-volume
      mountPath: /var/log/nginx
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","tail -f /logs/access.log"] 
    volumeMounts:
    - name: logs-volume
      mountPath: /logs
  volumes:
  - name: logs-volume
    nfs:
      server: 192.168.5.6  #nfs服务器地址
      path: /root/data/nfs #共享文件路径

4)最后,运行下pod,观察结果

# 创建pod
[root@k8s-master01 ~]# kubectl create -f volume-nfs.yaml
pod/volume-nfs created

# 查看pod
[root@k8s-master01 ~]# kubectl get pods volume-nfs -n dev
NAME                  READY   STATUS    RESTARTS   AGE
volume-nfs        2/2     Running   0          2m9s

# 查看nfs服务器上的共享目录,发现已经有文件了
[root@k8s-master01 ~]# ls /root/data/
access.log  error.log

高级存储

前面已经学习了使用NFS提供存储,此时就要求用户会搭建NFS系统,并且会在yaml配置nfs。由于kubernetes支持的存储系统有很多,要求客户全都掌握,显然不现实。为了能够屏蔽底层存储实现的细节,方便用户使用, kubernetes引入PV和PVC两种资源对象。

  • PV(Persistent Volume)是持久化卷的意思,是对底层的共享存储的一种抽象。一般情况下PV由kubernetes管理员进行创建和配置,它与底层具体的共享存储技术有关,并通过插件完成与共享存储的对接。
  • PVC(Persistent Volume Claim)是持久卷声明的意思,是用户对于存储需求的一种声明。换句话说,PVC其实就是用户向kubernetes系统发出的一种资源需求申请。

在这里插入图片描述

使用了PV和PVC之后,工作可以得到进一步的细分:

  • 存储:存储工程师维护
  • PV: kubernetes管理员维护
  • PVC:kubernetes用户维护

PV

PV是存储资源的抽象,下面是资源清单文件:

apiVersion: v1  
kind: PersistentVolume
metadata:
  name: pv2
spec:
  nfs: # 存储类型,与底层真正存储对应
  capacity:  # 存储能力,目前只支持存储空间的设置
    storage: 2Gi
  accessModes:  # 访问模式
  storageClassName: # 存储类别
  persistentVolumeReclaimPolicy: # 回收策略

PV 的关键配置参数说明:

  • 存储类型

    底层实际存储的类型,kubernetes支持多种存储类型,每种存储类型的配置都有所差异

  • 存储能力(capacity)

    目前只支持存储空间的设置( storage=1Gi ),不过未来可能会加入IOPS、吞吐量等指标的配置

  • 访问模式(accessModes)

    用于描述用户应用对存储资源的访问权限,访问权限包括下面几种方式:

    • ReadWriteOnce(RWO):读写权限,但是只能被单个节点挂载
    • ReadOnlyMany(ROX): 只读权限,可以被多个节点挂载
    • ReadWriteMany(RWX):读写权限,可以被多个节点挂载

    需要注意的是,底层不同的存储类型可能支持的访问模式不同

  • 回收策略(persistentVolumeReclaimPolicy)

    当PV不再被使用了之后,对其的处理方式。目前支持三种策略:

    • Retain (保留) 保留数据,需要管理员手工清理数据
    • Recycle(回收) 清除 PV 中的数据,效果相当于执行 rm -rf /thevolume/*
    • Delete (删除) 与 PV 相连的后端存储完成 volume 的删除操作,当然这常见于云服务商的存储服务

    需要注意的是,底层不同的存储类型可能支持的回收策略不同

  • 存储类别

    PV可以通过storageClassName参数指定一个存储类别

    • 具有特定类别的PV只能与请求了该类别的PVC进行绑定
    • 未设定类别的PV则只能与不请求任何类别的PVC进行绑定
  • 状态(status)

    一个 PV 的生命周期中,可能会处于4中不同的阶段:

    • Available(可用): 表示可用状态,还未被任何 PVC 绑定
    • Bound(已绑定): 表示 PV 已经被 PVC 绑定
    • Released(已释放): 表示 PVC 被删除,但是资源还未被集群重新声明
    • Failed(失败): 表示该 PV 的自动回收失败
实验

使用NFS作为存储,来演示PV的使用,创建3个PV,对应NFS中的3个暴露的路径。

  1. 准备NFS环境
# 创建目录
[root@nfs ~]# mkdir /root/data/{pv1,pv2,pv3} -pv

# 暴露服务
[root@nfs ~]# more /etc/exports
/root/data/pv1     192.168.5.0/24(rw,no_root_squash)
/root/data/pv2     192.168.5.0/24(rw,no_root_squash)
/root/data/pv3     192.168.5.0/24(rw,no_root_squash)

# 重启服务
[root@nfs ~]#  systemctl restart nfs
  1. 创建pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
  name:  pv1
spec:
  capacity: 
    storage: 1Gi
  accessModes:
  - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  nfs:
    path: /root/data/pv1
    server: 192.168.5.6

---

apiVersion: v1
kind: PersistentVolume
metadata:
  name:  pv2
spec:
  capacity: 
    storage: 2Gi
  accessModes:
  - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  nfs:
    path: /root/data/pv2
    server: 192.168.5.6
    
---

apiVersion: v1
kind: PersistentVolume
metadata:
  name:  pv3
spec:
  capacity: 
    storage: 3Gi
  accessModes:
  - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  nfs:
    path: /root/data/pv3
    server: 192.168.5.6
# 创建 pv
[root@k8s-master01 ~]# kubectl create -f pv.yaml
persistentvolume/pv1 created
persistentvolume/pv2 created
persistentvolume/pv3 created

# 查看pv
[root@k8s-master01 ~]# kubectl get pv -o wide
NAME   CAPACITY   ACCESS MODES  RECLAIM POLICY  STATUS      AGE   VOLUMEMODE
pv1    1Gi        RWX            Retain        Available    10s   Filesystem
pv2    2Gi        RWX            Retain        Available    10s   Filesystem
pv3    3Gi        RWX            Retain        Available    9s    Filesystem

PVC

PVC是资源的申请,用来声明对存储空间、访问模式、存储类别需求信息。下面是资源清单文件:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc
  namespace: dev
spec:
  accessModes: # 访问模式
  selector: # 采用标签对PV选择
  storageClassName: # 存储类别
  resources: # 请求空间
    requests:
      storage: 5Gi

PVC 的关键配置参数说明:

  • 访问模式(accessModes)

    用于描述用户应用对存储资源的访问权限

  • 选择条件(selector)

    通过Label Selector的设置,可使PVC对于系统中己存在的PV进行筛选

  • 存储类别(storageClassName)

    PVC在定义时可以设定需要的后端存储的类别,只有设置了该class的pv才能被系统选出

  • 资源请求(Resources )

    描述对存储资源的请求

实验
  1. 创建pvc.yaml,申请pv
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc1
  namespace: dev
spec:
  accessModes: 
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc2
  namespace: dev
spec:
  accessModes: 
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc3
  namespace: dev
spec:
  accessModes: 
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
# 创建pvc
[root@k8s-master01 ~]# kubectl create -f pvc.yaml
persistentvolumeclaim/pvc1 created
persistentvolumeclaim/pvc2 created
persistentvolumeclaim/pvc3 created

# 查看pvc
[root@k8s-master01 ~]# kubectl get pvc  -n dev -o wide
NAME   STATUS   VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE   VOLUMEMODE
pvc1   Bound    pv1      1Gi        RWX                           15s   Filesystem
pvc2   Bound    pv2      2Gi        RWX                           15s   Filesystem
pvc3   Bound    pv3      3Gi        RWX                           15s   Filesystem

# 查看pv
[root@k8s-master01 ~]# kubectl get pv -o wide
NAME  CAPACITY ACCESS MODES  RECLAIM POLICY  STATUS    CLAIM       AGE     VOLUMEMODE
pv1    1Gi        RWx        Retain          Bound    dev/pvc1    3h37m    Filesystem
pv2    2Gi        RWX        Retain          Bound    dev/pvc2    3h37m    Filesystem
pv3    3Gi        RWX        Retain          Bound    dev/pvc3    3h37m    Filesystem   
  1. 创建pods.yaml, 使用pv
apiVersion: v1
kind: Pod
metadata:
  name: pod1
  namespace: dev
spec:
  containers:
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","while true;do echo pod1 >> /root/out.txt; sleep 10; done;"]
    volumeMounts:
    - name: volume
      mountPath: /root/
  volumes:
    - name: volume
      persistentVolumeClaim:
        claimName: pvc1
        readOnly: false
---
apiVersion: v1
kind: Pod
metadata:
  name: pod2
  namespace: dev
spec:
  containers:
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","while true;do echo pod2 >> /root/out.txt; sleep 10; done;"]
    volumeMounts:
    - name: volume
      mountPath: /root/
  volumes:
    - name: volume
      persistentVolumeClaim:
        claimName: pvc2
        readOnly: false
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pods.yaml
pod/pod1 created
pod/pod2 created

# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME   READY   STATUS    RESTARTS   AGE   IP            NODE   
pod1   1/1     Running   0          14s   10.244.1.69   node1   
pod2   1/1     Running   0          14s   10.244.1.70   node1  

# 查看pvc
[root@k8s-master01 ~]# kubectl get pvc -n dev -o wide
NAME   STATUS   VOLUME   CAPACITY   ACCESS MODES      AGE   VOLUMEMODE
pvc1   Bound    pv1      1Gi        RWX               94m   Filesystem
pvc2   Bound    pv2      2Gi        RWX               94m   Filesystem
pvc3   Bound    pv3      3Gi        RWX               94m   Filesystem

# 查看pv
[root@k8s-master01 ~]# kubectl get pv -n dev -o wide
NAME   CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM       AGE     VOLUMEMODE
pv1    1Gi        RWX            Retain           Bound    dev/pvc1    5h11m   Filesystem
pv2    2Gi        RWX            Retain           Bound    dev/pvc2    5h11m   Filesystem
pv3    3Gi        RWX            Retain           Bound    dev/pvc3    5h11m   Filesystem

# 查看nfs中的文件存储
[root@nfs ~]# more /root/data/pv1/out.txt
node1
node1
[root@nfs ~]# more /root/data/pv2/out.txt
node2
node2

生命周期

PVC和PV是一一对应的,PV和PVC之间的相互作用遵循以下生命周期:

  • 资源供应:管理员手动创建底层存储和PV

  • 资源绑定:用户创建PVC,kubernetes负责根据PVC的声明去寻找PV,并绑定

    在用户定义好PVC之后,系统将根据PVC对存储资源的请求在已存在的PV中选择一个满足条件的

    • 一旦找到,就将该PV与用户定义的PVC进行绑定,用户的应用就可以使用这个PVC了
    • 如果找不到,PVC则会无限期处于Pending状态,直到等到系统管理员创建了一个符合其要求的PV

    PV一旦绑定到某个PVC上,就会被这个PVC独占,不能再与其他PVC进行绑定了

  • 资源使用:用户可在pod中像volume一样使用pvc

    Pod使用Volume的定义,将PVC挂载到容器内的某个路径进行使用。

  • 资源释放:用户删除pvc来释放pv

    当存储资源使用完毕后,用户可以删除PVC,与该PVC绑定的PV将会被标记为“已释放”,但还不能立刻与其他PVC进行绑定。通过之前PVC写入的数据可能还被留在存储设备上,只有在清除之后该PV才能再次使用。

  • 资源回收:kubernetes根据pv设置的回收策略进行资源的回收

    对于PV,管理员可以设定回收策略,用于设置与之绑定的PVC释放资源之后如何处理遗留数据的问题。只有PV的存储空间完成回收,才能供新的PVC绑定和使用

在这里插入图片描述

配置存储

ConfigMap

ConfigMap是一种比较特殊的存储卷,它的主要作用是用来存储配置信息的。

创建configmap.yaml,内容如下:

apiVersion: v1
kind: ConfigMap
metadata:
  name: configmap
  namespace: dev
data:
  info: |
    username:admin
    password:123456

接下来,使用此配置文件创建configmap

# 创建configmap
[root@k8s-master01 ~]# kubectl create -f configmap.yaml
configmap/configmap created

# 查看configmap详情
[root@k8s-master01 ~]# kubectl describe cm configmap -n dev
Name:         configmap
Namespace:    dev
Labels:       <none>
Annotations:  <none>

Data
====
info:
----
username:admin
password:123456

Events:  <none>

接下来创建一个pod-configmap.yaml,将上面创建的configmap挂载进去

apiVersion: v1
kind: Pod
metadata:
  name: pod-configmap
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    volumeMounts: # 将configmap挂载到目录
    - name: config
      mountPath: /configmap/config
  volumes: # 引用configmap
  - name: config
    configMap:
      name: configmap
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-configmap.yaml
pod/pod-configmap created

# 查看pod
[root@k8s-master01 ~]# kubectl get pod pod-configmap -n dev
NAME            READY   STATUS    RESTARTS   AGE
pod-configmap   1/1     Running   0          6s

#进入容器
[root@k8s-master01 ~]# kubectl exec -it pod-configmap -n dev /bin/sh
# cd /configmap/config/
# ls
info
# more info
username:admin
password:123456

# 可以看到映射已经成功,每个configmap都映射成了一个目录
# key--->文件     value---->文件中的内容
# 此时如果更新configmap的内容, 容器中的值也会动态更新

Secret

在kubernetes中,还存在一种和ConfigMap非常类似的对象,称为Secret对象。它主要用于存储敏感信息,例如密码、秘钥、证书等等。

  1. 首先使用base64对数据进行编码
[root@k8s-master01 ~]# echo -n 'admin' | base64 #准备username
YWRtaW4=
[root@k8s-master01 ~]# echo -n '123456' | base64 #准备password
MTIzNDU2
  1. 接下来编写secret.yaml,并创建Secret
apiVersion: v1
kind: Secret
metadata:
  name: secret
  namespace: dev
type: Opaque
data:
  username: YWRtaW4=
  password: MTIzNDU2
# 创建secret
[root@k8s-master01 ~]# kubectl create -f secret.yaml
secret/secret created

# 查看secret详情
[root@k8s-master01 ~]# kubectl describe secret secret -n dev
Name:         secret
Namespace:    dev
Labels:       <none>
Annotations:  <none>
Type:  Opaque
Data
====
password:  6 bytes
username:  5 bytes
  1. 创建pod-secret.yaml,将上面创建的secret挂载进去:
apiVersion: v1
kind: Pod
metadata:
  name: pod-secret
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    volumeMounts: # 将secret挂载到目录
    - name: config
      mountPath: /secret/config
  volumes:
  - name: config
    secret:
      secretName: secret
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-secret.yaml
pod/pod-secret created

# 查看pod
[root@k8s-master01 ~]# kubectl get pod pod-secret -n dev
NAME            READY   STATUS    RESTARTS   AGE
pod-secret      1/1     Running   0          2m28s

# 进入容器,查看secret信息,发现已经自动解码了
[root@k8s-master01 ~]# kubectl exec -it pod-secret /bin/sh -n dev
/ # ls /secret/config/
password  username
/ # more /secret/config/username
admin
/ # more /secret/config/password
123456

至此,已经实现了利用secret实现了信息的编码。

安全认证

访问控制概述

Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。所谓的安全性其实就是保证对Kubernetes的各种客户端进行认证和鉴权操作。

客户端

在Kubernetes集群中,客户端通常有两类:

  • User Account:一般是独立于kubernetes之外的其他服务管理的用户账号。
  • Service Account:kubernetes管理的账号,用于为Pod中的服务进程在访问Kubernetes时提供身份标识。

在这里插入图片描述

认证、授权与准入控制

ApiServer是访问及管理资源对象的唯一入口。任何一个请求访问ApiServer,都要经过下面三个流程:

  • Authentication(认证):身份鉴别,只有正确的账号才能够通过认证
  • Authorization(授权): 判断用户是否有权限对访问的资源执行特定的动作
  • Admission Control(准入控制):用于补充授权机制以实现更加精细的访问控制功能。

在这里插入图片描述

认证管理

Kubernetes集群安全的最关键点在于如何识别并认证客户端身份,它提供了3种客户端身份认证方式:

  • HTTP Base认证:通过用户名+密码的方式认证

这种认证方式是把“用户名:密码”用BASE64算法进行编码后的字符串放在HTTP请求中的Header Authorization域里发送给服务端。服务端收到后进行解码,获取用户名及密码,然后进行用户身份认证的过程。

  • HTTP Token认证:通过一个Token来识别合法用户

这种认证方式是用一个很长的难以被模仿的字符串–Token来表明客户身份的一种方式。每个Token对应一个用户名,当客户端发起API调用请求时,需要在HTTP Header里放入Token,API Server接到Token后会跟服务器中保存的token进行比对,然后进行用户身份认证的过程。

  • HTTPS证书认证:基于CA根证书签名的双向数字证书认证方式

这种认证方式是安全性最高的一种方式,但是同时也是操作起来最麻烦的一种方式。

在这里插入图片描述

HTTPS认证大体分为3个过程:

  1. 证书申请和下发

HTTPS通信双方的服务器向CA机构申请证书,CA机构下发根证书、服务端证书及私钥给申请者

  1. 客户端和服务端的双向认证
  1. 客户端向服务器端发起请求,服务端下发自己的证书给客户端,客户端接收到证书后,通过私钥解密证书,在证书中获得服务端的公钥,客户端利用服务器端的公钥认证证书中的信息,如果一致,则认可这个服务器
  2. 客户端发送自己的证书给服务器端,服务端接收到证书后,通过私钥解密证书,在证书中获得客户端的公钥,并用该公钥认证证书信息,确认客户端是否合法
  • 服务器端和客户端进行通信

服务器端和客户端协商好加密方案后,客户端会产生一个随机的秘钥并加密,然后发送到服务器端。
服务器端接收这个秘钥后,双方接下来通信的所有内容都通过该随机秘钥加密

注意: Kubernetes允许同时配置多种认证方式,只要其中任意一个方式认证通过即可

授权管理

授权发生在认证成功之后,通过认证就可以知道请求用户是谁, 然后Kubernetes会根据事先定义的授权策略来决定用户是否有权限访问,这个过程就称为授权。

每个发送到ApiServer的请求都带上了用户和资源的信息:比如发送请求的用户、请求的路径、请求的动作等,授权就是根据这些信息和授权策略进行比较,如果符合策略,则认为授权通过,否则会返回错误。

API Server目前支持以下几种授权策略:

  • AlwaysDeny:表示拒绝所有请求,一般用于测试
  • AlwaysAllow:允许接收所有请求,相当于集群不需要授权流程(Kubernetes默认的策略)
  • ABAC:基于属性的访问控制,表示使用用户配置的授权规则对用户请求进行匹配和控制
  • Webhook:通过调用外部REST服务对用户进行授权
  • Node:是一种专用模式,用于对kubelet发出的请求进行访问控制
  • RBAC:基于角色的访问控制(kubeadm安装方式下的默认选项)

RBAC(Role-Based Access Control) 基于角色的访问控制,主要是在描述一件事情:给哪些对象授予了哪些权限

其中涉及到了下面几个概念:

  • 对象:User、Groups、ServiceAccount
  • 角色:代表着一组定义在资源上的可操作动作(权限)的集合
  • 绑定:将定义好的角色跟用户绑定在一起

在这里插入图片描述

RBAC引入了4个顶级资源对象:

  • Role、ClusterRole:角色,用于指定一组权限
  • RoleBinding、ClusterRoleBinding:角色绑定,用于将角色(权限)赋予给对象

Role、ClusterRole

一个角色就是一组权限的集合,这里的权限都是许可形式的(白名单)。

# Role只能对命名空间内的资源进行授权,需要指定nameapce
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  namespace: dev
  name: authorization-role
rules:
- apiGroups: [""]  # 支持的API组列表,"" 空字符串,表示核心API群
  resources: ["pods"] # 支持的资源对象列表
  verbs: ["get", "watch", "list"] # 允许的对资源对象的操作方法列表
# ClusterRole可以对集群范围内资源、跨namespaces的范围资源、非资源类型进行授权
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: authorization-clusterrole
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "watch", "list"]

需要详细说明的是,rules中的参数:

  • apiGroups: 支持的API组列表
"","apps", "autoscaling", "batch"
  • resources:支持的资源对象列表
"services", "endpoints", "pods","secrets","configmaps","crontabs","deployments","jobs",
"nodes","rolebindings","clusterroles","daemonsets","replicasets","statefulsets",
"horizontalpodautoscalers","replicationcontrollers","cronjobs"
  • verbs:对资源对象的操作方法列表
"get", "list", "watch", "create", "update", "patch", "delete", "exec"

RoleBinding、ClusterRoleBinding

角色绑定用来把一个角色绑定到一个目标对象上,绑定目标可以是User、Group或者ServiceAccount。

# RoleBinding可以将同一namespace中的subject绑定到某个Role下,则此subject即具有该Role定义的权限
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: authorization-role-binding
  namespace: dev
subjects:
- kind: User
  name: heima
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role
  name: authorization-role
  apiGroup: rbac.authorization.k8s.io
# ClusterRoleBinding在整个集群级别和所有namespaces将特定的subject与ClusterRole绑定,授予权限
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: authorization-clusterrole-binding
subjects:
- kind: User
  name: heima
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: ClusterRole
  name: authorization-clusterrole
  apiGroup: rbac.authorization.k8s.io

RoleBinding引用ClusterRole进行授权

RoleBinding可以引用ClusterRole,对属于同一命名空间内ClusterRole定义的资源主体进行授权。

一种很常用的做法就是,集群管理员为集群范围预定义好一组角色(ClusterRole),然后在多个命名空间中重复使用这些ClusterRole。这样可以大幅提高授权管理工作效率,也使得各个命名空间下的基础性授权规则与使用体验保持一致。

# 虽然authorization-clusterrole是一个集群角色,但是因为使用了RoleBinding
# 所以heima只能读取dev命名空间中的资源
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: authorization-role-binding-ns
  namespace: dev
subjects:
- kind: User
  name: heima
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: ClusterRole
  name: authorization-clusterrole
  apiGroup: rbac.authorization.k8s.io

实战:创建一个只能管理dev空间下Pods资源的账号

1) 创建账号

# 1) 创建证书
[root@k8s-master01 pki]# cd /etc/kubernetes/pki/
[root@k8s-master01 pki]# (umask 077;openssl genrsa -out devman.key 2048)

# 2) 用apiserver的证书去签署
# 2-1) 签名申请,申请的用户是devman,组是devgroup
[root@k8s-master01 pki]# openssl req -new -key devman.key -out devman.csr -subj "/CN=devman/O=devgroup"     
# 2-2) 签署证书
[root@k8s-master01 pki]# openssl x509 -req -in devman.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out devman.crt -days 3650

# 3) 设置集群、用户、上下文信息
[root@k8s-master01 pki]# kubectl config set-cluster kubernetes --embed-certs=true --certificate-authority=/etc/kubernetes/pki/ca.crt --server=https://192.168.109.100:6443

[root@k8s-master01 pki]# kubectl config set-credentials devman --embed-certs=true --client-certificate=/etc/kubernetes/pki/devman.crt --client-key=/etc/kubernetes/pki/devman.key

[root@k8s-master01 pki]# kubectl config set-context devman@kubernetes --cluster=kubernetes --user=devman

# 切换账户到devman
[root@k8s-master01 pki]# kubectl config use-context devman@kubernetes
Switched to context "devman@kubernetes".

# 查看dev下pod,发现没有权限
[root@k8s-master01 pki]# kubectl get pods -n dev
Error from server (Forbidden): pods is forbidden: User "devman" cannot list resource "pods" in API group "" in the namespace "dev"

# 切换到admin账户
[root@k8s-master01 pki]# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

2) 创建Role和RoleBinding,为devman用户授权

kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  namespace: dev
  name: dev-role
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "watch", "list"]
  
---

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: authorization-role-binding
  namespace: dev
subjects:
- kind: User
  name: devman
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role
  name: dev-role
  apiGroup: rbac.authorization.k8s.io
[root@k8s-master01 pki]# kubectl create -f dev-role.yaml
role.rbac.authorization.k8s.io/dev-role created
rolebinding.rbac.authorization.k8s.io/authorization-role-binding created

3) 切换账户,再次验证

# 切换账户到devman
[root@k8s-master01 pki]# kubectl config use-context devman@kubernetes
Switched to context "devman@kubernetes".

# 再次查看
[root@k8s-master01 pki]# kubectl get pods -n dev
NAME                                 READY   STATUS             RESTARTS   AGE
nginx-deployment-66cb59b984-8wp2k    1/1     Running            0          4d1h
nginx-deployment-66cb59b984-dc46j    1/1     Running            0          4d1h
nginx-deployment-66cb59b984-thfck    1/1     Running            0          4d1h

# 为了不影响后面的学习,切回admin账户
[root@k8s-master01 pki]# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

准入控制

通过了前面的认证和授权之后,还需要经过准入控制处理通过之后,apiserver才会处理这个请求。

准入控制是一个可配置的控制器列表,可以通过在Api-Server上通过命令行设置选择执行哪些准入控制器:

--admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,
                      DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds

只有当所有的准入控制器都检查通过之后,apiserver才执行该请求,否则返回拒绝。

当前可配置的Admission Control准入控制如下:

  • AlwaysAdmit:允许所有请求
  • AlwaysDeny:禁止所有请求,一般用于测试
  • AlwaysPullImages:在启动容器之前总去下载镜像
  • DenyExecOnPrivileged:它会拦截所有想在Privileged Container上执行命令的请求
  • ImagePolicyWebhook:这个插件将允许后端的一个Webhook程序来完成admission controller的功能。
  • Service Account:实现ServiceAccount实现了自动化
  • SecurityContextDeny:这个插件将使用SecurityContext的Pod中的定义全部失效
  • ResourceQuota:用于资源配额管理目的,观察所有请求,确保在namespace上的配额不会超标
  • LimitRanger:用于资源限制管理,作用于namespace上,确保对Pod进行资源限制
  • InitialResources:为未设置资源请求与限制的Pod,根据其镜像的历史资源的使用情况进行设置
  • NamespaceLifecycle:如果尝试在一个不存在的namespace中创建资源对象,则该创建请求将被拒绝。当删除一个namespace时,系统将会删除该namespace中所有对象。
  • DefaultStorageClass:为了实现共享存储的动态供应,为未指定StorageClass或PV的PVC尝试匹配默认的StorageClass,尽可能减少用户在申请PVC时所需了解的后端存储细节
  • DefaultTolerationSeconds:这个插件为那些没有设置forgiveness tolerations并具有notready:NoExecute和unreachable:NoExecute两种taints的Pod设置默认的“容忍”时间,为5min
  • PodSecurityPolicy:这个插件用于在创建或修改Pod时决定是否根据Pod的security context和可用的PodSecurityPolicy对Pod的安全策略进行控制

DashBoard

之前在kubernetes中完成的所有操作都是通过命令行工具kubectl完成的。其实,为了提供更丰富的用户体验,kubernetes还开发了一个基于web的用户界面(Dashboard)。用户可以使用Dashboard部署容器化的应用,还可以监控应用的状态,执行故障排查以及管理kubernetes中各种资源。

部署Dashboard

1) 下载yaml,并运行Dashboard

# 下载yaml
[root@k8s-master01 ~]# wget  https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml

# 修改kubernetes-dashboard的Service类型
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  type: NodePort  # 新增
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30009  # 新增
  selector:
    k8s-app: kubernetes-dashboard

# 部署
[root@k8s-master01 ~]# kubectl create -f recommended.yaml

# 查看namespace下的kubernetes-dashboard下的资源
[root@k8s-master01 ~]# kubectl get pod,svc -n kubernetes-dashboard
NAME                                            READY   STATUS    RESTARTS   AGE
pod/dashboard-metrics-scraper-c79c65bb7-zwfvw   1/1     Running   0          111s
pod/kubernetes-dashboard-56484d4c5-z95z5        1/1     Running   0          111s

NAME                               TYPE       CLUSTER-IP      EXTERNAL-IP  PORT(S)         AGE
service/dashboard-metrics-scraper  ClusterIP  10.96.89.218    <none>       8000/TCP        111s
service/kubernetes-dashboard       NodePort   10.104.178.171  <none>       443:30009/TCP   111s

2)创建访问账户,获取token

# 创建账号
[root@k8s-master01-1 ~]# kubectl create serviceaccount dashboard-admin -n kubernetes-dashboard

# 授权
[root@k8s-master01-1 ~]# kubectl create clusterrolebinding dashboard-admin-rb --clusterrole=cluster-admin --serviceaccount=kubernetes-dashboard:dashboard-admin

# 获取账号token
[root@k8s-master01 ~]#  kubectl get secrets -n kubernetes-dashboard | grep dashboard-admin
dashboard-admin-token-xbqhh        kubernetes.io/service-account-token   3      2m35s

[root@k8s-master01 ~]# kubectl describe secrets dashboard-admin-token-xbqhh -n kubernetes-dashboard
Name:         dashboard-admin-token-xbqhh
Namespace:    kubernetes-dashboard
Labels:       <none>
Annotations:  kubernetes.io/service-account.name: dashboard-admin
              kubernetes.io/service-account.uid: 95d84d80-be7a-4d10-a2e0-68f90222d039

Type:  kubernetes.io/service-account-token

Data
====
namespace:  20 bytes
token:      eyJhbGciOiJSUzI1NiIsImtpZCI6ImJrYkF4bW5XcDhWcmNGUGJtek5NODFuSXl1aWptMmU2M3o4LTY5a2FKS2cifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtYWRtaW4tdG9rZW4teGJxaGgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkLWFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiOTVkODRkODAtYmU3YS00ZDEwLWEyZTAtNjhmOTAyMjJkMDM5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmVybmV0ZXMtZGFzaGJvYXJkOmRhc2hib2FyZC1hZG1pbiJ9.NAl7e8ZfWWdDoPxkqzJzTB46sK9E8iuJYnUI9vnBaY3Jts7T1g1msjsBnbxzQSYgAG--cV0WYxjndzJY_UWCwaGPrQrt_GunxmOK9AUnzURqm55GR2RXIZtjsWVP2EBatsDgHRmuUbQvTFOvdJB4x3nXcYLN2opAaMqg3rnU2rr-A8zCrIuX_eca12wIp_QiuP3SF-tzpdLpsyRfegTJZl6YnSGyaVkC9id-cxZRb307qdCfXPfCHR_2rt5FVfxARgg_C0e3eFHaaYQO7CitxsnIoIXpOFNAR8aUrmopJyODQIPqBWUehb7FhlU1DCduHnIIXVC_UICZ-MKYewBDLw
ca.crt:     1025 bytes

3)通过浏览器访问Dashboard的UI

在登录页面上输入上面的token
在这里插入图片描述

出现下面的页面代表成功

在这里插入图片描述

使用DashBoard

本章节以Deployment为例演示DashBoard的使用

查看

选择指定的命名空间dev,然后点击Deployments,查看dev空间下的所有deployment

在这里插入图片描述

扩缩容

在Deployment上点击规模,然后指定目标副本数量,点击确定
在这里插入图片描述

编辑

在Deployment上点击编辑,然后修改yaml文件,点击确定
在这里插入图片描述

查看Pod

点击Pods, 查看pods列表

在这里插入图片描述

操作Pod

选中某个Pod,可以对其执行日志(logs)、进入执行(exec)、编辑、删除操作

Dashboard提供了kubectl的绝大部分功能,这里不再一一演示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/938566.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【他山之石】Leading-Trim: The Future of Digital Typesetting:数字排版的未来 —— Leading-Trim

文章目录 【他山之石】Leading-Trim: The Future of Digital Typesetting&#xff1a;数字排版的未来 —— Leading-TrimHow an emerging CSS standard can fix old problems and raise the bar for web apps1. The problem with text boxes today2. How we got here: a histor…

vue3修改elementui-plus的默认样式的几种方法

#创作灵感 今天写vue的前端项目&#xff0c;因为需要去修改elementui-plus中drawer的默认样式&#xff0c;所以刚好将修改步骤记录下来。 一共提供了三种方法&#xff0c;但亲测第二种最好用。 使用第二种是可以无视自己的代码中是否定义了该盒子&#xff0c;因为有时候盒子的…

Qt WORD/PDF(四)使用 QAxObject 对 Word 替换(QWidget)

关于QT Widget 其它文章请点击这里: QT Widget 国际站点 GitHub: https://github.com/chenchuhan 国内站点 Gitee : https://gitee.com/chuck_chee 姊妹篇: Qt WORD/PDF&#xff08;一&#xff09;使用 QtPdfium库实现 PDF 操作 Qt WORD/PDF&#xff08;二…

MaskGCT——开源文本转语音模型,可模仿任何人说话声音

前期介绍过很多语音合成的模型&#xff0c;比如ChatTTS&#xff0c;微软语音合成大模型&#xff0c;字节跳动自家发布的语音合成模型Seed-TTS。其模型随着技术的不断发展&#xff0c;模型说话的声音也越来越像人类&#xff0c;虽然 seed-tts 可以进行语音合成等功能&#xff0c…

socket编程UDP-实现滑动窗口机制与累积确认GBN

在下面博客中&#xff0c;我介绍了利用UDP模拟TCP连接、按数据包发送文件的过程&#xff0c;并附上完整源码。 socket编程UDP-文件传输&模拟TCP建立连接脱离连接&#xff08;进阶篇&#xff09;_udp socket发送-CSDN博客 下面博客实现了停等机制。 socket编程UDP-实现停…

Linux 网络流量控制 - 实现概述

摘要 Linux 提供了一整套丰富的流量控制(traffic control)功能。本文档概述了相应的内核代码设计&#xff0c;描述了其结构&#xff0c;并通过描述一种新的排队策略来说明新元素的添加。 1 引言 最近的Linux内核提供了多种流量控制功能。Alexey Kuznetsov&#xff08;kuznet…

学习日志024--opencv中处理轮廓的函数

目录 前言​​​​​​​ 一、 梯度处理的sobel算子函数 功能 参数 返回值 代码演示 二、梯度处理拉普拉斯算子 功能 参数 返回值 代码演示 三、Canny算子 功能 参数 返回值 代码演示 四、findContours函数与drawContours函数 功能 参数 返回值 代码演示 …

.net core在linux导出excel,System.Drawing.Common is not supported on this platform

使用框架 .NET7 导出组件 Aspose.Cells for .NET 5.3.1 asp.net core mvc 如果使用Aspose.Cells导出excel时&#xff0c;报错 &#xff1a; System.Drawing.Common is not supported on this platform 平台特定实现&#xff1a; 对于Windows平台&#xff0c;System.Drawing.C…

AI视频配音技术创新应用与商业机遇

随着人工智能技术的飞速发展&#xff0c;AI视频配音技术已经成为内容创作者和营销人员的新宠。这项技术不仅能够提升视频内容的吸引力&#xff0c;还能为特定行业带来创新的解决方案。本文将探讨AI视频配音技术的应用场景&#xff0c;并讨论如何合法合规地利用这一技术。 AI视频…

【数字花园】个人知识库网站搭建:①netlify免费搭建数字花园

目录 [[数字花园]]的构建原理包括三个步骤&#xff1a;五个部署方案教程相关教程使用的平台 步骤信息管理 这里记录的自己搭建数字花园&#xff08;在线个人知识库&#xff09;的经历&#xff0c;首先尝试的是网上普遍使用的方法&#xff0c;也就是本篇文章介绍的。 后面会继续…

如何解决samba服务器共享文件夹不能粘贴文件

sudo vim /etc/samba/smb.conf在samba的配置文件中增加一个选项 writable yes重启Samba服务以使更改生效&#xff1a; sudo service smbd restart

NX系列-使用 `nmcli` 命令创建 Wi-Fi 热点并设置固定 IP 地址

使用 nmcli 命令创建 Wi-Fi 热点并设置固定 IP 地址 一、前言 在一些场景下&#xff0c;我们需要将计算机或嵌入式设备&#xff08;例如 NVIDIA Orin NX&#xff09;转换为 Wi-Fi 热点&#xff0c;以便其他设备&#xff08;如手机、笔记本等&#xff09;能够连接并使用该设备…

【Prometheus】Prometheus的样本

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

前端学习一

一 进程与线程 线程是进程执行的最小单位&#xff0c;进程是系统分配任务的最小单位。 一个进程可执行最少一个线程。线程分为子线程和主线程。 主线程关闭则子线程关闭。 二 浏览器进程 浏览器是多进程多线程应用。 进程包括&#xff1a; 浏览器进程 负责程序交互渲染…

鸿蒙开发-ArkTS 创建自定义组件

在 ArkTS 中创建自定义组件是一个相对简单但功能强大的过程。以下是如何在 ArkTS 中创建和使用自定义组件的详细步骤&#xff1a; 一、定义自定义组件 使用Component注解&#xff1a;为了注册一个组件&#xff0c;使其能够在其他文件中被引用&#xff0c;你需要使用Component…

探索Starship:一款用Rust打造的高性能终端

在终端的世界里&#xff0c;效率和美观往往并行不悖。今天&#xff0c;我们要介绍的是一款名为Starship的终端工具&#xff0c;它以其轻量级、高颜值和强大的自定义功能&#xff0c;赢得了众多开发者的青睐。 安装 任选一种方式进行安装 Windows &#x1fa9f; # scoop scoo…

[Unity] Text文本首行缩进两个字符

Text文本首行缩进两个字符的方法比较简单。通过代码把"\u3000\u3000"加到文本字符串前面即可。 比如&#xff1a; 效果&#xff1a; 代码&#xff1a; TMPtext1.text "\u3000\u3000" "选择动作类型&#xff1a;";

基于stm32的多旋翼无人机(Multi-rotor UAV based on stm32)

由于一直在调试本项目&#xff0c;好久没有发文章&#xff0c;最近本项目的PID调试初见成效&#xff01;开始正文前首先感谢各位粉丝的支持&#xff0c;以及对本项目技术上支持的老师以及师兄&#xff0c;谢谢你们&#xff01; 对应源码及文件&#xff1a;源码及文件下载 基于…

海量数据-Vastbase G100数据库安装

海量数据-Vastbase G100数据库安装 文章目录 海量数据-Vastbase G100数据库安装前期准备防火墙配置方案一&#xff1a;关闭防火墙方案二&#xff1a;开放数据库端口 SELINUX配置时间同步IPC参数配置 单机安装设置主机名创建数据库安装用户和目录(可选)修改资源限制 字符安装&am…

故障013:易忘的NULL表达式

故障013&#xff1a;易忘的NULL表达式 一、问题引入二、探索之路2.1 数据准备2.2 回顾NULL表达式2.3 重现问题2.3.1 分析原因2.3.2 如何化解预期&#xff1f; 三、知识总结 一、问题引入 某单位开发人员理直气壮抛出一张截图&#xff0c;以红色醒目地标记问题&#xff0c;好似…