【计算机网络】Layer4-Transport layer

目录

  • 传输层协议
    • How demultiplexing works in transport layer(传输层如何进行分用)
      • 分用(Demultiplexing)的定义:
      • TCP/UDP段格式:
  • UDP
    • UDP的特点:
    • UDP Format
    • 端口号
    • Trivial File Transfer Protocol (TFTP)
    • File Transfer Protocol (FTP)
      • FTP Replies
  • TCP
    • TCP简介:
    • TCP的特性:
    • 端口号的作用:
    • TCP Header Fields(TCP头部字段)
    • Connection-Oriented Demultiplexing
      • TCP套接字通过**四元组(4-tuple)**唯一标识:
    • TCP Connection Establishment & Termination TCP连接的建立与终止
      • 连接建立
      • 连接终止:
    • TCP状态图
      • 客户端
      • 服务器端
    • TCP Timers(TCP定时器)
      • TCP定时器的作用:
    • Selective Acknowledgement(选择性确认)
      • SACK(选择性确认)的用途:
      • 实现方式:
    • TCP Congestion Control Parameters(TCP拥塞控制参数)
      • 主要参数:
  • Streaming Multimedia: UDP or TCP?
    • UDP 特性:
    • TCP 特性:
  • HTTP Adaptive Streaming (HAS)
    • HAS 的特点:
    • 常见变体:
    • HAS 的分段传输机制:

传输层协议

传输层协议是端到端的协议。仅在主机上实现。
两种常见的传输层协议:

  • UDP

    • 面向数据报(Datagram oriented):基于数据报的传输方式,不建立连接。
    • 不可靠,无连接(Unreliable, connectionless):不保证数据的可靠性,也没有连接建立过程。
    • 简单(Simple):协议设计较为轻量化,开销小。
    • 支持单播和多播(Unicast and multicast):适合多种网络通信场景。
    • 常用于网络控制信令服务:
      • 如网络管理(SNMP)、路由(RIP)、域名解析(DNS)等。
    • 适用于交互式多媒体应用:
      • 如视频流、音频流等需要快速传输的场景。
  • TCP

    • 面向流(Stream oriented):数据以字节流的形式传输。
    • 可靠,面向连接(Reliable, connection-oriented):通过握手机制建立连接,确保数据可靠传输。
    • 复杂(Complex):实现了流量控制、拥塞控制等功能。
    • 仅支持单播(Unicast only):只支持点对点通信。
    • 广泛用于大多数互联网应用:
      • 如网页(HTTP)、邮件(SMTP)、文件传输(FTP)、终端(Telnet)等。
    • 许多基于HTTP/TCP的应用程序依赖它。

How demultiplexing works in transport layer(传输层如何进行分用)

分用(Demultiplexing)的定义:

分用是传输层的重要功能,用于将接收到的IP数据报分发到正确的应用程序(或套接字)。
具体分用过程:

主机接收到IP数据报,其中包含:

  • 源IP地址和目标IP地址(来自网络层)。
  • 源端口号和目标端口号(来自传输层)。

每个数据报包含一个传输层段(TCP或UDP段)。
传输层通过IP地址和端口号将数据分配到正确的套接字(socket)。

TCP/UDP段格式:

在这里插入图片描述

UDP

UDP的特点:

  • 不可靠传输:UDP不会确认数据是否正确到达。
  • 功能简单:
    • 基本功能是将IP数据报的主机到主机传递扩展为应用程序到应用程序的传递。
  • UDP的主要附加功能是多路复用(multiplexing)和分用(demultiplexing)。
  • UDP的传输过程:
    • 应用程序通过UDP协议向目标发送数据报。
    • IP层负责数据报的路由和传递。
    • 接收主机的UDP层根据端口号将数据分发到目标应用程序。

UDP Format

在这里插入图片描述

端口号

  • 动态/私有端口(Dynamic/private ports):
    • 范围:49152-65535。
    • 供客户端随机选择使用。
  • 注册端口(Registered ports):
    • 范围:1024-49151。
    • 普通用户进程使用。
  • 知名端口(Well-known ports):
    • 范围:0-1023。
    • 保留给系统或服务器使用,例如HTTP(80端口)和DNS(53端口)。

Trivial File Transfer Protocol (TFTP)

  • TFTP会话过程:

    • 客户端通过UDP端口69向服务器发送读/写请求(RRQ/WRQ)。
    • 如果是读请求,服务器返回一个长度为512字节的数据包,编号为1。
    • 客户端发送ACK,确认收到数据块1。
    • 服务器发送下一个数据块2。
    • 重复以上步骤,直到最后一个数据块的长度小于512字节,传输结束。
  • TFTP数据包结构:

    • opcode:操作码(读、写、数据、ACK等)。
    • block number:数据块编号。
    • data:数据字段,最大长度512字节。

File Transfer Protocol (FTP)

  • 连接类型:
    • 控制连接:
      • 服务器的控制端口为21。
      • 用于发送命令和响应。
    • 数据连接:
      • 服务器的数据端口为20。
      • 用于传输文件数据。

在这里插入图片描述

FTP Replies

Typical FTP replies
● 125 Data connection already open; transfer starting
● 200 Command OK
● 331 Username OK, password required
● 425 Can’t open data connection
● 452 Error writing file
● 500 Syntax error (unrecognized command)
● 501 Syntax error (invalid arguments

TCP

TCP简介:

  • TCP是传输层的另一个主要协议,与UDP相比,TCP提供可靠的、面向连接的服务。
    常用于需要高可靠性的应用,例如HTTP、FTP、Telnet等。

TCP的特性:

  • 可靠性:
    提供错误控制、确认机制和数据重传功能。
  • 流量控制:
    基于接收方缓冲区的反馈,动态调整发送速度。
  • 拥塞控制:
    根据网络的拥塞状态调整数据传输速率。

端口号的作用:

源端口号和目标端口号用于唯一标识发送方和接收方的套接字。

TCP Header Fields(TCP头部字段)

  • 源端口号(Source Port Number):
    标识发送方应用程序。
  • 目标端口号(Destination Port Number):
    标识接收方应用程序。
  • 序列号(Sequence Number):
    标识数据段在整个传输流中的位置,用于数据重组。
  • 确认号(Acknowledgment Number):
    用于确认接收到的数据段。
  • 窗口大小(Window Size):
    表示接收方允许的最大数据量,用于流量控制。
  • 校验和(Checksum):
    用于检测TCP头部和数据是否有错误。

Connection-Oriented Demultiplexing

TCP套接字通过**四元组(4-tuple)**唯一标识:

  • 源IP地址。
  • 源端口号。
  • 目标IP地址。
  • 目标端口号。

TCP Connection Establishment & Termination TCP连接的建立与终止

连接建立

使用三次握手(Three-Way Handshake):

  1. 客户端发送SYN。
  2. 服务器返回SYN-ACK。
  3. 客户端发送ACK,连接建立成功

连接终止:

使用四次挥手(Four-Way Handshake):

  1. 一方发送FIN,表示完成数据发送。
  2. 另一方发送ACK确认。
  3. 第二方发送FIN。
  4. 第一方发送ACK,连接终止。

TCP状态图

客户端

  1. CLOSED:初始状态,客户端准备建立连接。
  2. SYN_SENT:客户端发送SYN,等待服务器响应。
  3. ESTABLISHED:三次握手完成,连接建立。
  4. FIN_WAIT_1:客户端发送FIN,启动关闭过程。
  5. FIN_WAIT_2:客户端等待对方发送FIN。
  6. TIME_WAIT:客户端发送ACK后进入等待状态,确保数据可靠传输。

在这里插入图片描述

服务器端

  1. CLOSED:服务器未开启。
  2. LISTEN:服务器等待客户端连接。
  3. SYN_RCVD:收到客户端SYN,发送SYN-ACK。
  4. ESTABLISHED:三次握手完成,进入数据传输状态。
  5. CLOSE_WAIT:收到客户端的FIN,等待应用程序关闭。
  6. LAST_ACK:发送FIN并等待客户端的ACK。
    CLOSED:连接完全关闭。

在这里插入图片描述

TCP Timers(TCP定时器)

TCP定时器的作用:

  • 连接建立定时器(Connection Establishment Timer):
    控制建立连接的最大时间。
  • 重传定时器(Retransmission Timer):
    如果数据段未被确认,则重传。
  • 延迟ACK定时器(Delayed ACK Timer):
    在交互式数据流中延迟ACK以提高效率。
  • 保持活动定时器(Keepalive Timer):
    检查连接是否仍然存活。
  • 坚持定时器(Persist Timer):
    在接收窗口为零时避免死锁,周期性地探测窗口大小。
    使用指数回退算法(Exponential Backoff)。
  • TIME_WAIT定时器:
    在连接关闭后保持一段时间,防止旧的延迟数据段被误解为新连接的一部分

Selective Acknowledgement(选择性确认)

SACK(选择性确认)的用途:

在TCP中,如果接收方发现多个数据段丢失,可以使用SACK选项通知发送方哪些数据段已成功接收。
SACK允许发送方仅重传丢失的数据段,而不是重传整个窗口的数据,从而提高效率。

实现方式:

TCP的SACK功能通过两个选项实现:

  • SACK-Permitted:连接建立时协商是否允许使用SACK。
  • SACK Option:在数据传输中实际使用,提供丢失和接收数据段的信息。

TCP Congestion Control Parameters(TCP拥塞控制参数)

主要参数:

  • 广告窗口大小(rwnd):
    接收方通知发送方的缓冲区可用空间。
  • 最大分段大小(MSS):
    每个TCP数据段的最大字节数。
  • 拥塞窗口(cwnd):
    发送方根据网络状况调整的窗口大小。
  • 慢启动阈值(ssthresh):
    用于分界慢启动和拥塞避免的阈值。

Streaming Multimedia: UDP or TCP?

UDP 特性:

  • 发送速率固定,忽略网络拥塞。
  • 播放延迟短(2-5秒),以补偿网络延迟抖动。
  • 错误恢复能力弱:丢包可能导致数据损失。
  • 典型应用:多媒体服务(如交互式应用)。

TCP 特性:

  • 不适用于多播,但适用于单播。
  • 通过拥塞控制调节速率,但可能导致波动。
  • 播放延迟较大,但能提高可靠性。
  • 支持穿越防火墙。
  • 典型应用:与 HTTP 结合的流媒体服务。

HTTP Adaptive Streaming (HAS)

HAS 的特点:

  • 基于 TCP 实现,具备高可靠性。
  • 与现有 Web 技术集成:能利用 HTTP,适配现有网络基础设施。
  • 自动适应可用带宽。
  • 标准化支持(如 MPEG-DASH)。

常见变体:

  • Microsoft Silverlight
  • Apple HLS
    选择比特率:根据当前和先前下载速率动态调整每段视频的比特率。

HAS 的分段传输机制:

  • 视频分片:视频文件被划分为2-10秒的视频片段。
  • 多码率编码:每个片段被编码为多个可选比特率。
  • Manifest 文件:
    • 提供可供客户端选择的比特率列表。
  • 客户端算法:
    • 起始选择较低的比特率。
    • 根据传输时间动态调整比特率。
    • 尝试维持播放缓冲区的正常水位。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/938423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio创建新项目并引入第三方so外部aar库驱动NFC读写器读写IC卡

本示例使用设备:https://item.taobao.com/item.htm?spma21dvs.23580594.0.0.52de2c1bbW3AUC&ftt&id615391857885 一、打开Android Studio,点击 File> New>New project 菜单,选择 要创建的项目模版,点击 Next 二、输入项目名称…

【Linux】—简单实现一个shell(myshell)

大家好呀,我是残念,希望在你看完之后,能对你有所帮助,有什么不足请指正!共同学习交流哦! 本文由:残念ing原创CSDN首发,如需要转载请通知 个人主页:残念ing-CSDN博客&…

【Python爬虫系列】_032.Scrapy_全站爬取

课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)教程合集 👈👈

Android通过okhttp下载文件(本文案例 下载mp4到本地,并更新到相册)

使用步骤分为两步 第一步导入 okhttp3 依赖 第二步调用本文提供的 utils 第一步这里不做说明了,直接提供第二步复制即用 DownloadUtil 中 download 为下载文件 参数说明 这里主要看你把 destFileName 下载文件名称定义为什么后缀,比如我定义为 .mp4 下…

win10配置子系统Ubuntu子系统(无需通过Windows应用市场)实际操作记录

win10配置子系统Ubuntu子系统(无需通过Windows应用市场)实际操作记录 参考教程 : win10配置子系统Ubuntu子系统(无需通过Windows应用市场) - 一佳一 - 博客园 开启虚拟机服务的 以管理员方式运行PowerShell运行命令。 &#xf…

Showrunner AI技术浅析(四):多智能体模拟

多智能体模拟技术涉及多个智能体(Agents)在虚拟环境中的行为和互动,每个智能体都有自己的属性、目标和行为规则。 1. 多智能体模拟概述 多智能体模拟技术通过模拟多个智能体在虚拟环境中的互动来生成复杂的剧情和场景。每个智能体都有其独特…

创新性融合丨卡尔曼滤波+目标检测 新突破!

2024深度学习发论文&模型涨点之——卡尔曼滤波目标检测 卡尔曼滤波是一种递归算法,用于估计线性动态系统的状态。它通过预测和更新两个步骤,结合系统模型和观测数据,来估计系统状态,并最小化估计的不确定性。 在目标检测中&am…

USB模块布局布线

1、USB接口定义 2、USB模块常规分类介绍 3、USB常用管脚定义图示 4、USB模块布局布线分析 USB3.0高速线因为速度比较高,建议走圆弧线不能走钝角 5、总结 1、CTRL鼠标中间滑轮按下可以看线的长度 2、不懂差分类和规则的设置,可以看本人写的AD基础操作…

SpringCloud系列之分布式配置中心极速入门与实践

[toc] 1、分布式配置中心简介 在实际的项目开发中,配置文件是使用比较多的,很多项目有测试环境(TEST)、开发环境(DEV)、规范的项目还有集成环境(UAT)、生产环境(PROD),每个环境就一个配置文件。 CSDN链接:SpringCloud系列之分布式…

【Vue3学习】setup语法糖中的ref,reactive,toRef,toRefs

在 Vue 3 的组合式 API(Composition API)中,ref、reactive、toRef 和 toRefs 是四个非常重要的工具函数,用于创建和管理响应式数据。 一、ref 用ref()包裹数据,返回的响应式引用对象,包含一个 .value 属性&#xff0…

解决 Git Permission denied 问题

前言 push项目时出现gitgithub.com: Permission denied (publickey). fatal: Could not read from remote repository.Please make sure you have the correct access rights and the repository exists.出现这个问题表示你在尝试将本地代码推送到GitHub时,没有提供…

React的状态管理库-Redux

核心思想:单一数据源、状态是只读的、以及使用纯函数更新状态。 组成部分 Store(存储) 应用的唯一状态容器,存储整个应用的状态树,使用 createStore() 创建。 getState():获取当前状态。dispatch(action)&#xff…

蓝卓总裁谭彰:AI+工业互联网推动制造业数字化转型

近日,新一代工业操作系统supOS6.0在2024中国5G工业互联网大会上重磅发布。 大会期间,工信部新闻宣传中心《人民邮电报》对蓝卓总裁谭彰就“工业互联网人工智能技术融合的思考”“supOS6.0的探索与实践”“未来工业互联网平台的发展方向”展开专题访谈&am…

RabbitMQ消息队列的笔记

Rabbit与Java相结合 引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> 在配置文件中编写关于rabbitmq的配置 rabbitmq:host: 192.168.190.132 /…

数据结构:贪吃蛇详解

目录 一.地图的设计 1.字符与坐标&#xff1a; 2.本地化&#xff08;头文件&#xff09;: 3.类项&#xff1a; 4.setlocale函数&#xff1a; &#xff08;1&#xff09;函数原型&#xff1a; &#xff08;2&#xff09;使用&#xff1a; 5.宽字符的打印&#xff1a; &a…

医学AI前沿进展:图像分割以及细胞分割领域的最新研究|文献速递·24-12-17

小罗碎碎念 今天推文和大家分享医学AI领域中&#xff0c;图像分割以及细胞分割方面的三个工作。 首先看一下图像分割以及细胞分割方面&#xff0c;近五年的一个论文发表情况&#xff0c;我们可以看到&#xff0c;这个领域在前几年的热度基本持平&#xff0c;到了24年迎来了一个…

Endnote | 查看文献所在分组

软件版本&#xff1a;Endnote X8 第一种方式&#xff1a; 在文献上右键——记录摘要&#xff0c;即可在弹出页面上看到自定义和智能组的分组情况。 第二种方式&#xff1a; 在菜单栏点击文献——记录摘要&#xff0c;也可以查看分组情况。 注&#xff1a; 新版本的endnote软件…

ElasticSearch 数据聚合与运算

1、数据聚合 聚合&#xff08;aggregations&#xff09;可以让我们极其方便的实现数据的统计、分析和运算。实现这些统计功能的比数据库的 SQL 要方便的多&#xff0c;而且查询速度非常快&#xff0c;可以实现近实时搜索效果。 注意&#xff1a; 参加聚合的字段必须是 keywor…

34. 在排序数组中查找元素的第一个和最后一个位置 二分法

34. 在排序数组中查找元素的第一个和最后一个位置 class Solution { public:vector<int> searchRange(vector<int>& nums, int target) {vector<int> res(2,-1);res[0]findleft(nums,target);if(res[0] -1) return res;res[1] findright(nums,target);…

回型矩阵:JAVA

解题思路&#xff1a; 通过定义四条边界&#xff1b;top,left,right,bottom,来循环&#xff0c;当top>bottom&&left>right的时候循环终止 循环结束的条件&#xff1a; 链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述…