目录
- 1、前言
- 工程概述
- 免责声明
- 2、相关方案推荐
- 我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
- 我这里已有的 GT 高速接口解决方案
- 3、工程详细设计方案
- 工程设计原理框图
- 用户数据发送模块
- 基于GTP高速接口的数据回环传输架构
- GTP IP 简介
- GTP 基本结构
- GTP 发送和接收处理流程
- GTP 的参考时钟
- GTP 发送接口
- GTP 接收接口
- GTP IP核调用和使用
- 接收数据对齐模块
- 接收数据比对模块
- 工程源码架构
- 工程仿真
- 4、vivado工程源码1详解-->Artix7--35T版本
- 5、vivado工程源码1详解-->Artix7--100T版本
- 6、工程移植说明
- vivado版本不一致处理
- FPGA型号不一致处理
- 其他注意事项
- 7、上板调试验证
- 准备工作
- GTP光口数据回环效果演示
- 8、工程代码的获取
FPGA实现GTP光口数据回环传输,基于Aurora 8b/10b编解码架构,提供2套工程源码和技术支持
1、前言
FPGA实现SFP光口视频编解码现状;
目前基于Xilinx系列FPGA的SFP光口视频编解码主要有以下几种,Artix7系列的GTP、Kintex7系列的GTX、更高端FPGA器件的GTH、GTY、GTV、GTM等,线速率越来越高,应用场景也越来越高端;编码方式也是多种多样,有8b/10b编解码、64b/66b编解码、HDMI编解码、SDI编解码等等;本设计采用7系列的GTP作为高速接口、8b/10b编解码的方式实现SFP光口数据回环传输;
工程概述
本设计使用Xilinx Artix7系列FPGA为平台,实现GTP 8b/10b编解码数据回环传输,旨在为读者提供一套精简版的、基于GTP 8b/10b编解码的数据收发和数据对齐架构;
首先FPGA内部设计了一个用户数据发送模块,该模块生成发送数据帧,发送数据帧由帧头+数据+帧尾的经典三段式构成;让后调用Xilinx官方的GTP IP核实现发送数据的8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的发送数据通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收,然后送入Xilinx官方的GTP IP核实现接收数据8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入用户接收数据比对模块,实现帧头检测、数据逐个比对、帧尾检测等操作,以检验数据收发的正确性;针对市场主流需求,本博客设计并提供2套工程源码,具体如下:
现对上述2套工程源码做如下解释,方便读者理解:
工程源码1
开发板FPGA型号为Xilinx–Artix7–xc7a35tfgg484-2;首先FPGA内部设计了一个用户数据发送模块,该模块生成发送数据帧,发送数据帧由帧头+数据+帧尾的经典三段式构成;让后调用Xilinx官方的GTP IP核实现发送数据的8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的发送数据通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收,然后送入Xilinx官方的GTP IP核实现接收数据8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入用户接收数据比对模块,实现帧头检测、数据逐个比对、帧尾检测等操作,以检验数据收发的正确性;该工程的作用是让读者快速掌握GTP 8b/10b编码数据传输的工程架构设计,该工程提供了仿真工程+上板应用工程,应用价值较高;
工程源码2
开发板FPGA型号为Xilinx–Artix7–xc7a100tfgg484-2;首先FPGA内部设计了一个用户数据发送模块,该模块生成发送数据帧,发送数据帧由帧头+数据+帧尾的经典三段式构成;让后调用Xilinx官方的GTP IP核实现发送数据的8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的发送数据通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收,然后送入Xilinx官方的GTP IP核实现接收数据8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入用户接收数据比对模块,实现帧头检测、数据逐个比对、帧尾检测等操作,以检验数据收发的正确性;该工程的作用是让读者快速掌握GTP 8b/10b编码数据传输的工程架构设计,该工程提供了仿真工程+上板应用工程,应用价值较高;
本博客详细描述了FPGA基于Aurora 8b/10b编解码架构实现GTP光口数据回环传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往
我这里已有的 GT 高速接口解决方案
我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往
3、工程详细设计方案
工程设计原理框图
工程设计原理框图如下:
用户数据发送模块
用户数据发送模块用于产生发送数据,发送数据以数据帧的形式产生,由帧头+数据+帧尾的经典三段式构成;如下:
帧头:
可参数化配置,4字节,但低8位必须为8’hbc,帧头用于定义一帧数据的开始;
数据:
单个数据4字节,数据内容可任意,我的设计中数据段为从零开始的累加数,数据段长度可参数化配置,数据段为传输的有效数据;
帧尾:
可参数化配置,4字节,但低8位必须为8’hbc,帧头用于定义一帧数据的结束;
用户数据发送模块顶层接口如下:
基于GTP高速接口的数据回环传输架构
本设计使用GTP高速接口数据回环传输,使用8b/10b编解码协议,总体代码架构如下:
基于GTP高速接口的数据回环传输架构顶层接口核参数配置如下:
本设计共例化了2路GTP,所以2路GTP的收发回环方式也做了灵活的参数化配置,如果你只需要1路GT,则可删除另一路,如果你想例化更多路GT,则可根据上述设计方法扩展,十分方便;
GTP IP 简介
关于GTP介绍最详细的肯定是Xilinx官方的《ug482_7Series_GTP_Transceivers》,我们以此来解读:《ug482_7Series_GTP_Transceivers》的PDF文档我已放在了资料包里;我用到的开发板FPGA型号为Xilinx–Artix7系列FPGA;带有4路GTP资源,每通道的收发速度为500 Mb/s到6.6 Gb/s之间。GTP收发器支持不同的串行传输接口或协议,比如8b/10b编解码、PCIE /2.0接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;
GTP 基本结构
Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTP 收发器在Artix7系列FPGA 芯片中的示意图;《ug482_7Series_GTP_Transceivers》第13页;GTP 的具体内部逻辑框图如下所示,它由四个收发器通道 GTPE2_CHANNEL原语 和一个GTPE2_COMMON 原语 组成。每路 GTPE2_CHANNEL 包含发送电路 TX 和接收电路 RX;《ug482_7Series_GTP_Transceivers》第14页;每个 GTPE2_CHANNEL 的逻辑电路如下图所示:《ug482_7Series_GTP_Transceivers》第15页;
GTPE2_CHANNEL的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;
GTP 发送和接收处理流程
首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。
GTP 的参考时钟
GTP 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTP模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 125Mhz 的 GTP 参考时钟连接到 MGTREFCLK0/1上,作为 GTP 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTPE2_COMMOM 的 PLL0 和 PLL1 中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTP 的参考时钟结构图如下:《ug482_7Series_GTP_Transceivers》第21页;
GTP 发送接口
《ug482_7Series_GTP_Transceivers》的第75到123页
详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;用户只需要关心发送接口的时钟和数据即可;
GTP 接收接口
《ug482_7Series_GTP_Transceivers》的第125到213页
详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;用户只需要关心接收接口的时钟和数据即可;
GTP IP核调用和使用
GTP IP核配置调用在工程种位置如下:
GTP IP核调用和使用很简单,通过vivado的UI界面即可完成,如下:
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTP需要那么复杂么?
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTP的范围是0.5到6.25G,由于我的项目是视频传输,所以在GTP的速率范围内均可,为了通用性,我在vivado工程中配置为5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTP组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug482_7Series_GTP_Transceivers》,官方将GTP资源分成了4组,名字分别为X0Y0、X0Y1、X0Y2、X0Y3,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTP组和引脚是怎么对应的呢?《ug482_7Series_GTP_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
我的板子原理图如下:
选择外部数据位宽32bit的8b/10b编解码,如下:
下面这里讲的是K码检测:
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;
接收数据对齐模块
由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;数据对齐模块顶层接口如下:
接收数据比对模块
接收数据比对模块用于和发送数据比对,用于验证数据收发的正确性,由帧头检测+数据比对+帧尾检测的经典三段式构成;如下:
帧头检测:
帧头可参数化配置,4字节,但低8位必须为8’hbc,帧头检测用于检测一帧数据的开始,是数据比对状态机的初始跳转条件,只有检测到正确的帧头后,才能进入有效数据段的逐个比对状态;
有效数据段逐个比对:
单个数据4字节,数据内容可任意,我的设计中数据段为从零开始的累加数,可与用户数据发送模块生成的累加数逐个比对,数据段长度可参数化配置;
帧尾检测:
帧头可参数化配置,4字节,但低8位必须为8’hbc,帧头检测用于检测一帧数据的结束,是下一帧数据比对的跳转条件,只有检测到正确的帧尾后,才能断定一帧数据比对正确,才能进入下一帧数据比对状态;
接收数据比对模块顶层接口如下:
工程源码架构
提供2套工程源码,以工程源码1为例,综合后的工程源码架构如下:
工程编译后资源消耗低、功耗低、时序收敛,符合工程项目应用要求,如下:
工程仿真
工程代码中已提供了仿真,可在vivado中直接仿真,操作如下:
仿真结果如下:
需要注意的是;GTP仿真有时候IP起不来,但上板调试却可以起来,这个BUG至今上不知道为什么。。。
4、vivado工程源码1详解–>Artix7–35T版本
开发板FPGA型号:Artix7–xc7a35tfgg484-2;
FPGA开发环境:Vivado2019.1;
输入:FPGA内部生成的发送数据帧;
输出:FPGA内部做收发数据比对,并输出比对结果;
回环光口类型:SFP光口;
高速接口类型:GTP,线速率5Gbps;
高速接口编解码协议:8b/10b编解码;
实现功能:FPGA实现GTP光口数据回环传输;
工程作用:此工程目的是让读者掌握FPGA实现GTP光口数据回环传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
5、vivado工程源码1详解–>Artix7–100T版本
开发板FPGA型号:Artix7–xc7a100tfgg484-2;
FPGA开发环境:Vivado2019.1;
输入:FPGA内部生成的发送数据帧;
输出:FPGA内部做收发数据比对,并输出比对结果;
回环光口类型:SFP光口;
高速接口类型:GTP,线速率5Gbps;
高速接口编解码协议:8b/10b编解码;
实现功能:FPGA实现GTP光口数据回环传输;
工程作用:此工程目的是让读者掌握FPGA实现GTP光口数据回环传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
6、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
7、上板调试验证
准备工作
需要准备的器材如下:
FPGA开发板,没有开发板可以找本博提供;
SFP光模块和光纤;
我的开发板了连接如下:
GTP光口数据回环效果演示
GTP光口数据回环效果演示如下:
8、工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:文章末尾的V名片。
网盘资料如下:
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务: