主流深度学习框架及神经网络模型汇总

目录

主流深度学习框架及神经网络模型汇总

一、人工智能的研究领域和分支

二、主流深度学习框架​编辑

1.TensorFlow

2.PyTorch

3.PaddlePaddle

4.Keras

5.Caffe/Caffe2

6.MXNet

7.Theano

8.Torch

9.CNTK

10.ONNX

三、深度学习移动端推理框架

1.TensorRT

2.TF-Lite

3.OpenVINO

4.CoreML

5.NCNN

6.MNN

7.Tenigne

8.NNIE

9.RKNN

四、卷积神经网络 – CNN

1.目标检测模型

2.图像分类模型

3.语义分割模型


主流深度学习框架及神经网络模型汇总

一、人工智能的研究领域和分支

二、主流深度学习框架

如果走学术路线,果断PyTorch,如果想走部署,TensorFLow+PaddlePaddle+Caffe。

1.TensorFlow

TensorFlow是Google开发的一款开源软件库,专为深度学习或人工神经网络而设计。TensorFlow允许你可以使用流程图创建神经网络和计算模型。它是可用于深度学习的最好维护和最为流行的开源库之一。TensorFlow框架可以使用C++也可以使用Python。你可以使用TensorBoard进行简单的可视化并查看计算流水线。其灵活的架构允许你轻松部署在不同类型的设备上。不利的一面是,TensorFlow没有符号循环,不支持分布式学习。此外,它还不支持Windows。

  • 出生地:Google
  • 特点:计算图、分布式训练效果强、底层C构建速度快,生态强大
  • 主要调包语言:Python、C/C++、JS
  • 评价:对标PyTorch、学术界没市场了、部署更加的方便
  • 入门推荐:建议做工程的小伙伴入门,学术界真的马上被PyTorch垄断

2.PyTorch

PyTorch是脸书的框架,前身是Torch,支持动态图,而且提供了Python接口。是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。Python是现在学术界的霸主,对于想要做学术的同学绝对首推(重点)。

  • 出生地:FaceBook
  • 特点:生态强大、入门爽歪歪、代码量少(重点)
  • 主要调包语言:Python、C/C++
  • 评价:入门很快、速度有点慢、部署很垃圾、学术界的霸主
  • 入门推荐:想要做学术的童鞋绝对首选,几乎现在顶会论文的代码都是这个框架写的,不过想要做部署的还是看看TensorFLow或者PaddlePaddle吧。

3.PaddlePaddle

百度推出的深度学习框架,算是国人最火的深度学习框架了。跟新了2.0的高级API与动态图后,Paddle更加的强大。百度有很多PaddlePaddle的教程,对于初学者来说还是相当不错的。PaddlePaddle有很多便捷的工具,比如detection、cv、nlp、GAN的工具包,也有专门的可视化工具(远离tensorboard的支配)。

  • 出生地:百度
  • 特点:计算图动态图都支持、有高级API、速度快、部署方便、有专门的平台
  • 主要调包语言:Python、C/C++、JS
  • 入门推荐:如果没有卡那就非常适合,如果算力不缺,建议先看看PyTorch,当然也可以PaddlePaddle。

4.Keras

Keras可以当成一种高级API,它的后端可以是Theano和tensorFlow(可以想成把TF的很多打包了)。由于是高级API非常的方便,非常适合科研人员上手。

  • 作者:Google AI 研究人员 Francois Chollet
  • 特点:生态强大、入门爽歪歪、代码量少(重点)
  • 主要调包语言:Python、C/C++、JS
  • 评价:太适合入门了、速度有点慢、版本得匹配后端框架的版本
  • 入门推荐:强推入门首选,但是后续一定要看看算法的底层是怎样工作的。

5.Caffe/Caffe2

Caffe是顶级高校UCB的贾扬清博士开发的,主要是适用于深度学习在计算机视觉的应用。使用Caffe做算法代码量很少,经常就是修修改改就能用,神经网络模型的管理非常的方便,而且算是比较早的部署在各种落地场景中。Caffe2可以理解为一个新版本的Caffe,但是有很多不同,Caffe2后来并入了PyTorch。该工具支持Ubuntu,Mac OS X和Windows等操作系统。

  • 作者:UCB 贾扬清博士
  • 特点:计算图、部署方便、训练方便、cuDnn与MKL均支持
  • 主要调包语言:Python、Matlab脚本、C++
  • 评价:卷积人的大爱、环境不好配置、感觉偏底层、Caffe2还是PyTorch
  • 入门推荐:不是很建议,真的想了解可以先入门PyTorch

6.MXNet

MXNet 是一个社区维护起来的深度学习框架,后来被亚马逊看上了。有类似于 Theano 和 TensorFlow 的计算图,也有灵活的动态图,摒弃有高级接口方便调用。MXNet的底层为C构建,优化的很好,很多推理框架都能直接转换,非常方便。

  • 出生地:社区
  • 特点:计算图动态图都支持、有高级API、速度快、部署方便
  • 主要调包语言:Python、C/C++、JS(js用的相对少)
  • 评价:一定意义上是国人的框架、小团体整的社区维护、文档少生态不行
  • 入门推荐:一般。

7.Theano

Theano是07年左右开发的一个多维数组的计算库,支持GPU计算,当时很多人当成“支持GPU的Numpy”,底层优化的非常好,支持导出C的脚本。

  • 出生地:蒙特利尔大学
  • 特点:计算图、Python+Numpy、源于学术界
  • 主要调包语言:Python
  • 评价:很臃肿、不支持分布式、被后面的TensorFlow打击的很大
  • 入门推荐:绝对不建议,真的要用的话,先学习别的框架再看Github就行了

8.Torch

Torch是一款针对ML算法且又简单易用的开源计算框架。该工具提供了高效的GPU支持,N维数组,数值优化例程,线性代数例程以及用于索引、切片和置换的例程。基于Lua的脚本语言,该工具带有大量预先训练好的模型。这款灵活高效的ML研究工具支持诸如Linux,Android,Mac OS X,iOS和Windows等主流平台。

9.CNTK

Microsoft Cognitive Toolkit是具有C#/C++/Python接口支持的最快的深度学习框架之一。此款开源框架带有强大的C++ API,比TensorFlow更快、更准确。该工具还支持内置数据读取器的分布式学习。它支持诸如前馈,CNN,RNN,LSTM和序列到序列等算法。该工具支持Windows和Linux。

  • 出生地:微软
  • 特点:非常严谨、语音上有一些优势、难度有点高
  • 调包语言:C++、Python
  • 评价:语音上不错呀、微软推不下去了、感觉不如TensorFlow、有点复古
  • 入门推荐:不建议,看看就好。

10.ONNX

ONNX是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch, MXNet)可以采用相同格式存储模型数据并交互。用大白话说就是是一个中间件,比如你PyTorch的模型想转换别的,就得通过ONNX,现在有的框架可以直接转,但是在没有专门支持的时候,ONNX就非常重要了,万物先转ONNX,ONNX再转万物。ONNX本身也有自己的模型库以及很多开源的算子,所以用起来门槛不是那么高。

  • 出生地:有点多,很多大厂一起整的
  • 特点:万能转换
  • 主要调包语言:Python、C/C++
  • 入门推荐:感觉不用刻意去学习,用到了再看就可以的

三、深度学习移动端推理框架

一些框架是面向算力有限的设备上做模型部署的,比如嵌入式设备、机器人或者移动设备上。

1.TensorRT

TensorRT是NVIDIA公司推出的面向GPU算力的推理框架,在服务端和嵌入式设备上都有非常好的效果,但是底层不开源。TensorRT的合作方非常的多,主流的框架都支持。如果有GPU的话,传统的算子可以用CUDA,深度学习搞成TensorRT。

  • 出生地:NVIDIA
  • 特点:自产自销NVIDIA不多解释,框架支持很多,生态很棒,稳定性高
  • 主要调包语言:Python、C/C++
  • 推荐平台:NVIDIA Jetson系列的嵌入式、NVIDIA的GPU(一条龙)
  • 支持模型:TensorFlow1.x、TensorFlow2.x、PyTorch、ONNX、PaddlePaddle、MXNet、Caffe、Theano,Torch,Lasagne,Blocks。
  • 入门推荐:非常适合入门,毕竟直接在自己的GPU上做测试就行。

2.TF-Lite

TF-Lite是谷歌针对移动端的推理框架,非常的强大。强大的原因在于Keras、TensorFlow的模型都能使用,而且有专门的TPU和安卓平台,这种一条龙的服务让TensorFlow在部署方面还在称霸。TF-Lite如果用Keras、TensorFlow的模型去转换一般来说都是脚本直接开搞,自己重构的部分相对少很多。

  • 出生地:Google
  • 特点:一条龙的服务专属平台
  • 主要调包语言:Python、C/C++、Java
  • 支持模型:Keras、TensorFlow、ONNX
  • 推荐平台:几乎所有的ARM处理器和微控制器(树莓派,甚至单片机)、TPU专享
  • 入门推荐:TFboys(TensorFlow使用者)的必备,毕竟一条龙,还有机会了解TPU,非常贴心。

3.OpenVINO

OpenVINO是Intel的推理框架,一个超级强的推理部署工具。工具包中提供了很多便利的工具,例如OpenVINO提供了深度学习推理套件(DLDT),该套件可以将各种开源框架训练好的模型进行线上部署,除此之外,还包含了图片处理工具包OpenCV,视频处理工具包Media SDK。如果是针对Intel的加速棒或者工控机上部署真的是非常不错的。

  • 出生地:Intel
  • 特点:面向Intel设备的加速,便捷使用,安装和SDK很方便
  • 主要调包语言:C/C++、Python
  • 支持模型:TensorFlow、PyTorch、ONNX、MXNet、PaddlePaddle
  • 推荐平台:自己的电脑、Intel神经网络加速棒、Intel的FPGA
  • 入门推荐:作为入门的不啊还是不错的,只是落地场景有点少,毕竟现在是边缘设备的时代

因为工业上工控机多但是深度学习模型用的还是少,很多都是传统的算法,很多落地场景中上Intel的处理器并不占优势。

4.CoreML

CoreML是苹果公司推出针对ios以及macOS系统部署的机器学习平台,底层不开源。在苹果设备上,CoreML的速度是最快的,但是也只能用于苹果的设备上。现在开发apple app主要是Swift,受到Swift出的特性,真的是各种语言各种粘,很好入门。

  • 出生地:Apple
  • 特点:面向苹果设备,专业设备上速度第一,稳定、入门简单
  • 主要调包语言:C/C++、Python、Obj-C、Swift
  • 支持模型:TensorFlow、ONNX、PyTorch、ONNX、MXNet、Caffe
  • 推荐平台:iMac、MacBook、iPhone、iPad、AppleWatch
  • 入门推荐:针对Apple的开发者,业余选手得买个MBP

5.NCNN

NCNN是腾讯推出的推理框架,一定意义上是之前使用非常广的一个推理框架,社区做的也非常棒。NCNN的速度是超过TFLite的,但是有点麻烦的是之前得经常自己用C去复现一些算子(框架起步都这样),现在因为使用的人数很多,因此算子很多。NCNN对于X86、GPU均有支持,在嵌入式、手机上的表现非常好。

  • 出生地:腾讯优图实验室
  • 特点:面向移动端的加速、手机处理器的加速单元支持很棒
  • 主要调包语言:C/C++、Python
  • 支持模型:TensorFlow、ONNX、PyTorch、ONNX、MXNet、DarkNet、Caffe
  • 推荐平台:安卓/苹果手机、ARM处理器设备
  • 入门推荐:对于嵌入式或者APP开发有经验的同学绝对首推的

6.MNN

MNN是阿里巴巴推出的移动端框架,现在也支持模型训练,支持OpenCL,OpenGL,Vulkan和Metal等。同样的设备,MNN的部署速度是非常快的,树莓派3B上cpu的加速是NCNN速度的3被以上,而且文档非常的全,代码整洁清晰,非常适合开发者使用。

  • 出生地:阿里巴巴多部门合作
  • 特点:面向移动端的加速、应该是现在速度之最
  • 主要调包语言:C/C++、Python
  • 支持模型:TensorFlow、ONNX、PyTorch、MXNet、NCNN、Caffe、TF-Lite
  • 推荐平台:安卓/苹果手机、ARM处理器设备
  • 入门推荐:首推的部署推理框架,绝对的好用,在苹果设备上的速度也很棒。MNN框架感觉比NCNN稳定一些,而且源码非常整洁,研究底层也是非常方便。

7.Tenigne

Tenigne-Lite是OpenAILab推出的边缘端推理部署框架,OpenCV官方在嵌入式上的部署首推Tenigne-Lite。现在对于RISC-V、CUDA、TensorRT、NPU的支持非常不错。Tengine是现在来说感觉安装环境中bug最少的框架,几乎安按照文档走不会出问题的。

  • 出生地:OpenAILab
  • 特点:面向移动端的加速、速度和MNN不相上下、对于嵌入式的支持非常好
  • 主要调包语言:C/C++、Python
  • 支持模型:TensorFlow、ONNX、DarkNet、MXNet、NCNN、Caffe、TF-Lite、NCNN
  • 推荐平台:安卓手机、ARM处理器设备、RISC-V
  • 入门推荐:嵌入式开发的小伙伴还等什么,干就完了

Tengine-Lite是个朝气蓬勃的框架,虽然出的时间并没有其他框架早,但是框架性能、易用性还是非常适合嵌入式玩家的。

8.NNIE

NNIE 即 Neural Network Inference Engine,是海思 SVP 开发框架中的处理单元之一,主要针对深度学习卷积神经网络加速处理的硬件单元,可用于图片分类、目标检测等 AI 应用场景。

支持现有大部分公开的卷积神经网络模型,如 AlexNet、VGG16、ResNet18、ResNet50、GoogLeNet 等分类网络,Faster R-CNN、YOLO、SSD、RFCN 等检测目标网络,以及 FCN 、SegNet 等分割场景网络。目前 NNIE 配套软件及工具链仅支持以 Caffe 框架,使用其他框架的网络模型需要转化为 Caffe 框架下的模型。

华为海思NNIE非常强大,之前移动端真的快霸主,但是现在受制约芯片停产。

9.RKNN

Rockchip提供RKNN-Toolkit开发套件进行模型转换、推理运行和性能评估。

  • 模型转换:支持 Caffe、Tensorflow、TensorFlow Lite、ONNX、Darknet 模型,支持RKNN 模型导入导出,后续能够在硬件平台上加载使用。

  • 模型推理:能够在 PC 上模拟运行模型并获取推理结果,也可以在指定硬件平台RK3399Pro Linux上运行模型并获取推理结果。

  • 性能评估:能够在 PC 上模拟运行并获取模型总耗时及每一层的耗时信息,也可以通过联机调试的方式在指定硬件平台 RK3399Pro Linux上运行模型,并获取模型在硬件上运行时的总时间和每一层的耗时信息。

四、卷积神经网络 – CNN

https://easyai.tech/ai-definition/cnn/#zuoyong

CNN 的基本原理:

  1. 卷积层 – 主要作用是保留图片的特征
  2. 池化层 – 主要作用是把数据降维,可以有效的避免过拟合
  3. 全连接层 – 根据不同任务输出我们想要的结果

CNN 的实际应用:

  1. 图像分类、检索
  2. 目标检测
  3. 目标分割(语义分割、实例分割、全景分割)
  4. 人脸识别
  5. 骨骼识别

Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3)

1.目标检测模型

判断是图片里面有什么,分别在哪里。

https://github.com/hoya012/deep_learning_object_detection

image

模型性能对比表

DetectorVOC07 (mAP@IoU=0.5)VOC12 (mAP@IoU=0.5)COCO (mAP@IoU=0.5:0.95)Published In
R-CNN58.5--CVPR'14
SPP-Net59.2--ECCV'14
MR-CNN78.2 (07+12)73.9 (07+12)-ICCV'15
Fast R-CNN70.0 (07+12)68.4 (07++12)19.7ICCV'15
Faster R-CNN73.2 (07+12)70.4 (07++12)21.9NIPS'15
YOLO v166.4 (07+12)57.9 (07++12)-CVPR'16
G-CNN66.866.4 (07+12)-CVPR'16
AZNet70.4-22.3CVPR'16
ION80.177.933.1CVPR'16
HyperNet76.3 (07+12)71.4 (07++12)-CVPR'16
OHEM78.9 (07+12)76.3 (07++12)22.4CVPR'16
MPN--33.2BMVC'16
SSD76.8 (07+12)74.9 (07++12)31.2ECCV'16
GBDNet77.2 (07+12)-27.0ECCV'16
CPF76.4 (07+12)72.6 (07++12)-ECCV'16
R-FCN79.5 (07+12)77.6 (07++12)29.9NIPS'16
DeepID-Net69.0--PAMI'16
NoC71.6 (07+12)68.8 (07+12)27.2TPAMI'16
DSSD81.5 (07+12)80.0 (07++12)33.2arXiv'17
TDM--37.3CVPR'17
FPN--36.2CVPR'17
YOLO v278.6 (07+12)73.4 (07++12)-CVPR'17
RON77.6 (07+12)75.4 (07++12)27.4CVPR'17
DeNet77.1 (07+12)73.9 (07++12)33.8ICCV'17
CoupleNet82.7 (07+12)80.4 (07++12)34.4ICCV'17
RetinaNet--39.1ICCV'17
DSOD77.7 (07+12)76.3 (07++12)-ICCV'17
SMN70.0--ICCV'17
Light-Head R-CNN--41.5arXiv'17
YOLO v3--33.0arXiv'18
SIN76.0 (07+12)73.1 (07++12)23.2CVPR'18
STDN80.9 (07+12)--CVPR'18
RefineDet83.8 (07+12)83.5 (07++12)41.8CVPR'18
SNIP--45.7CVPR'18
Relation-Network--32.5CVPR'18
Cascade R-CNN--42.8CVPR'18
MLKP80.6 (07+12)77.2 (07++12)28.6CVPR'18
Fitness-NMS--41.8CVPR'18
RFBNet82.2 (07+12)--ECCV'18
CornerNet--42.1ECCV'18
PFPNet84.1 (07+12)83.7 (07++12)39.4ECCV'18
Pelee70.9 (07+12)--NIPS'18
HKRM78.8 (07+12)-37.8NIPS'18
M2Det--44.2AAAI'19
R-DAD81.2 (07++12)82.0 (07++12)43.1AAAI'19
ScratchDet84.1 (07++12)83.6 (07++12)39.1CVPR'19
Libra R-CNN--43.0CVPR'19
Reasoning-RCNN82.5 (07++12)-43.2CVPR'19
FSAF--44.6CVPR'19
AmoebaNet + NAS-FPN--47.0CVPR'19
Cascade-RetinaNet--41.1CVPR'19
HTC--47.2CVPR'19
TridentNet--48.4ICCV'19
DAFS85.3 (07+12)83.1 (07++12)40.5ICCV'19
Auto-FPN81.8 (07++12)-40.5ICCV'19
FCOS--44.7ICCV'19
FreeAnchor--44.8NeurIPS'19
DetNAS81.5 (07++12)-42.0NeurIPS'19
NATS--42.0NeurIPS'19
AmoebaNet + NAS-FPN + AA--50.7arXiv'19
SpineNet--52.1arXiv'19
CBNet--53.3AAAI'20
EfficientDet--52.6CVPR'20
DetectoRS--54.7arXiv'20

2.图像分类模型

图像分类是对图像判断出所属的分类,比如在学习分类中数据集有人(person)、羊(sheep)、狗(dog)和猫(cat)四种。

https://github.com/weiaicunzai/awesome-image-classification

ConvNetImageNet top1 accImageNet top5 accPublished In
Vgg76.393.2ICLR2015
GoogleNet-93.33CVPR2015
PReLU-nets-95.06ICCV2015
ResNet-96.43CVPR2015
PreActResNet79.995.2CVPR2016
Inceptionv382.896.42CVPR2016
Inceptionv482.396.2AAAI2016
Inception-ResNet-v282.496.3AAAI2016
Inceptionv4 + Inception-ResNet-v283.596.92AAAI2016
RiR--ICLR Workshop2016
Stochastic Depth ResNet78.02-ECCV2016
WRN78.194.21BMVC2016
SqueezeNet60.482.5arXiv2017(rejected by ICLR2017)
GeNet72.1390.26ICCV2017
MetaQNN--ICLR2017
PyramidNet80.895.3CVPR2017
DenseNet79.294.71ECCV2017
FractalNet75.892.61ICLR2017
ResNext-96.97CVPR2017
IGCV173.0591.08ICCV2017
Residual Attention Network80.595.2CVPR2017
Xception7994.5CVPR2017
MobileNet70.6-arXiv2017
PolyNet82.6496.55CVPR2017
DPN7994.5NIPS2017
Block-QNN77.493.54CVPR2018
CRU-Net79.794.7IJCAI2018
ShuffleNet75.3-CVPR2018
CondenseNet73.891.7CVPR2018
NasNet82.796.2CVPR2018
MobileNetV274.7-CVPR2018
IGCV270.07-CVPR2018
hier79.794.8ICLR2018
PNasNet82.996.2ECCV2018
AmoebaNet83.996.6arXiv2018
SENet-97.749CVPR2018
ShuffleNetV281.44-ECCV2018
IGCV372.2-BMVC2018
MnasNet76.1392.85CVPR2018
SKNet80.60-CVPR2019
DARTS73.391.3ICLR2019
ProxylessNAS75.192.5ICLR2019
MobileNetV375.2-arXiv2019
Res2Net79.294.37arXiv2019
EfficientNet84.397.0ICML2019

3.语义分割模型

语义分割(semantic segmentation)就是需要区分到图中每一点像素点,而不仅仅是矩形框框住了。但是同一物体的不同实例不需要单独分割出来。对下图左,标注为人,羊,狗,草地。而不需要羊1,羊2,羊3,羊4,羊5等。

  • FCN
  • SegNet
  • U-Net
  • Dilated Convolutions
  • DeepLab (v1 & v2)
  • RefineNet
  • PSPNet
  • Large Kernel Matters
  • DeepLab v3


主流深度学习框架及神经网络模型汇总 - 简书

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93538.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端将file文件传给后台,后台将文件传给前台(包含上传下载)

前端将file文件传给后台,后台将文件传给前台(包含上传下载) 在开发过程中,经常会遇见对文件的处理。 例如:在上传、下载文件时,需要在前端选完文件传到后台传到服务器;或者文件从后台&#xf…

Mybatis缓存

缓存(cache)的作用是为了减去数据库的压力,提高查询性能。缓存实现的原理 是从数据库中查询出来的对象在使用完后不要销毁,而是存储在内存(缓存)中, 当再次需要获取该对象时,直接从内存&#xf…

Docker部署项目

相关系列文章: 1、DockerHarbor私有仓库快速搭建 2、DockerJenkinsHarbor 3、Docker安装Mysql、Redis、nginx、nacos等环境 1、jenkins构建前端并上传服务器 在这篇文章中(DockerJenkinsHarbor)未完成前端的远程部署,这里对前端vue工程进行编译打包并上…

学习ts(十)装饰器

定义 装饰器是一种特殊类型的声明,它能够被附加到类声明,方法,访问符,属性或参数上,是一种在不改变原类和使用继承的情况下,动态的扩展对象功能。 装饰器使用expression形式,其中expression必须…

【C++】—— C++11新特性之 “右值引用和移动语义”

前言: 本期,我们将要的介绍有关 C右值引用 的相关知识。对于本期知识内容,大家是必须要能够掌握的,在面试中是属于重点考察对象。 目录 (一)左值引用和右值引用 1、什么是左值?什么是左值引用…

政务大厅人员睡岗离岗玩手机识别算法

人员睡岗离岗玩手机识别算法通过pythonyolo系列网络框架算法模型,人员睡岗离岗玩手机识别算法利用图像识别和行为分析,识别出睡岗、离岗和玩手机等不符合规定的行为,并发出告警信号以提醒相关人员。Python是一种由Guido van Rossum开发的通用…

Linux————LNMT搭建

一、原理 搭建一个基于Linux系统的Web服务器,使用Nginx作为反向代理服务器,Tomcat作为应用服务器,MySQL作为数据库服务器。 Linux操作系统 基于Linux的操作系统 Nginx Nginx是一款高性能的Web服务器和反向代理服务器&#xff0…

基于Java+SpringBoot+Vue前后端分离图书管理系统设计和实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…

svn软连接和文件忽略

软连接 1)TortoiseSVN->Properties->New->Externals->New 2)填入软连接信息 Local path: 写下软连接后的文件夹的名字 URL: 想要软连接的牡蛎->TortoiseSVN->Repo-browser 复制下填入 文件忽略 以空格隔开就行

C++:list使用以及模拟实现

list使用以及模拟实现 list介绍list常用接口1.构造2.迭代器3.容量4.访问数据5.增删查改6.迭代器失效 list模拟实现1.迭代器的实现2.完整代码 list介绍 list是一个类模板&#xff0c;加<类型>实例化才是具体的类。list是可以在任意位置进行插入和删除的序列式容器。list的…

软考:中级软件设计师:网络类型与拓扑结构,网络规划与设计,ip地址与子网划分,特殊含义的IP地址

软考&#xff1a;中级软件设计师:网络类型与拓扑结构 提示&#xff1a;系列被面试官问的问题&#xff0c;我自己当时不会&#xff0c;所以下来自己复盘一下&#xff0c;认真学习和总结&#xff0c;以应对未来更多的可能性 关于互联网大厂的笔试面试&#xff0c;都是需要细心准…

LAMP 配置与应用

LAMP 架构的组成 LAM(M)P&#xff1a; L&#xff1a;linux A&#xff1a;apache (httpd) M&#xff1a;mysql, mariadb P&#xff1a;php, perl, python apache的功能&#xff1a; 第一&#xff1a;处理http的请求、构建响应报文等自身服务&#xff1b; 第二&#xff1a…

C语言之数组题

目录 1.使用函数实现数组操作 2.冒泡排序 3.三子棋 4.【一维数组】交换数组 5.扫雷 6.概念辨析tips 我又来了&#xff0c;今天是数组题&#xff0c;本人还在补军训真的热&#xff01;&#x1f197; 1.使用函数实现数组操作 2.冒泡排序 3.三子棋 4.【一维数组】交换数组 …

vscode使用anaconda自带的python环境在终端运行时报错

目录 具体报错内容官方翻译报错讲人话解决方法 具体报错内容 CommandNotFoundError: Your shell has not been properly configured to use conda activate. If your shell is Bash or a Bourne variant, enable conda for the current user with$ echo ". E:\Anaconda/e…

Nginx配置文件详解

Nginx配置文件详解 1、Nginx配置文件1.1主配置文件详解1.2子配置文件 2、全局配置部分2.1修改启动的工作进程数&#xff08;worker process) 优化2.2cpu与worker process绑定2.3 PID 路径修改2.4 修改工作进程的优先级2.5调试工作进程打开的文件的个数2.6关闭master-worker工作…

docker使用安装教程

docker使用安装教程 一、docker安装及下载二、使用教程2.1 镜像2.2 容器2.3 docker安装Redis 一、docker安装及下载 一、安装 安装执行命令&#xff1a;curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 二、启停常用命令 启动docker,执行命令&#xf…

自动化运维工具——ansible安装及模块介绍

目录 一、ansible——自动化运维工具 1.1 Ansible 自动运维工具特点 1.2 Ansible 运维工具原理 二、安装ansible 三、ansible命令模块 3.1 command模块 3.2 shell模块 3.3 cron模块 3.4 user模块 3.5 group 模块 3.6 copy模块 3.7 file模块 3.8 ping模…

videojs 实现自定义组件(视频画质/清晰度切换) React

前言 最近使用videojs作为视频处理第三方库&#xff0c;用来对接m3u8视频类型。这里总结一下自定义组件遇到的问题及实现&#xff0c;目前看了许多文章也不全&#xff0c;官方文档写的也不是很详细&#xff0c;自己摸索了一段时间陆陆续续完成了&#xff0c;这是实现后的效果.…

Cpp学习——编译链接

目录 ​编辑 一&#xff0c;两种环境 二&#xff0c;编译环境下四个部分的 1.预处理 2.编译 3.汇编 4.链接 三&#xff0c;执行环境 一&#xff0c;两种环境 在程序运行时会有两种环境。第一种便是编译环境&#xff0c;第二种则是执行环境。如下图&#xff1a; 在程序运…

ubuntu22.04.1-live的vm虚拟机扩展磁盘

1、虚拟机分配硬盘100G&#xff0c;进系统df -h根目录只有50G 2、查看所有块设备 lsblk 3、 查看卷信息vgdisplay 4、在原有基础上增加49G lvextend -L 49G /dev/ubuntu-vg/ubuntu-lv 5、调整大小 resize2fs /dev/mapper/ubuntu--vg-ubuntu--lv