九、页面级变量的状态管理

状态管理概述

在声明式UI编程框架中,UI是程序状态的运行结果,用户构建了一个UI模型,其中应用的运行时的状态是参数。当参数改变时,UI作为返回结果,也将进行对应的改变。这些运行时的状态变化所带来的UI的重新渲染,在ArkUI中统称为状态管理机制。

自定义组件拥有变量,变量必须被装饰器装饰才可以成为状态变量,状态变量的改变会引起UI的渲染刷新。如果不使用状态变量,UI只能在初始化时渲染,后续将不会再刷新。 下图展示了State和View(UI)之间的关系。

  • View(UI):UI渲染,指将build方法内的UI描述和@Builder装饰的方法内的UI描述映射到界面。
  • State:状态,指驱动UI更新的数据。用户通过触发组件的事件方法,改变状态数据。状态数据的改变,引起UI的重新渲染。

基本概念

  • 状态变量:被状态装饰器装饰的变量,状态变量值的改变会引起UI的渲染更新。示例:@State num: number = 1,其中,@State是状态装饰器,num是状态变量。
  • 常规变量:没有被状态装饰器装饰的变量,通常应用于辅助计算。它的改变永远不会引起UI的刷新。以下示例中increaseBy变量为常规变量。
  • 数据源/同步源:状态变量的原始来源,可以同步给不同的状态数据。通常意义为父组件传给子组件的数据。以下示例中数据源为count: 1。
  • 命名参数机制:父组件通过指定参数传递给子组件的状态变量,为父子传递同步参数的主要手段。示例:CompA: ({ aProp: this.aProp })。
  • 从父组件初始化:父组件使用命名参数机制,将指定参数传递给子组件。子组件初始化的默认值在有父组件传值的情况下,会被覆盖。示例:
@Component
struct MyComponent {
  //状态变量
  @State count: number = 0;
  //常规变量
  increaseBy: number = 1;

  build() {
  }
}

@Component
struct Parent {
  build() {
    Column() {
      // 从父组件初始化,覆盖本地定义的默认值
      MyComponent({ count: 1, increaseBy: 2 })
    }
  }
}
  • 初始化子组件:父组件中状态变量可以传递给子组件,初始化子组件对应的状态变量。示例同上。
  • 本地初始化:在变量声明的时候赋值,作为变量的默认值。示例:@State count: number = 0。

装饰器总览

ArkUI提供了多种装饰器,通过使用这些装饰器,状态变量不仅可以观察在组件内的改变,还可以在不同组件层级间传递,比如父子组件、跨组件层级,也可以观察全局范围内的变化。根据状态变量的影响范围,将所有的装饰器可以大致分为:

  • 管理组件拥有状态的装饰器:组件级别的状态管理,可以观察组件内变化,和不同组件层级的变化,但需要唯一观察同一个组件树上,即同一个页面内。
  • 管理应用拥有状态的装饰器:应用级别的状态管理,可以观察不同页面,甚至不同UIAbility的状态变化,是应用内全局的状态管理。

:::success
咱们来看一张完整的装饰器说明图,咱们后续的学习就围绕着这张图来展开

:::

  1. 管理组件状态:小框中
  2. 管理应用状态:大框中

@State自己的状态

@State 装饰器咱们已经学习过了,所以就不从头讲解,而是说2 个使用的注意点

:::success
观察变化注意点:

并不是状态变量的所有更改都会引起UI的刷新,只有可以被框架观察到的修改才会引起UI刷新。

  • 当装饰的数据类型为boolean、string、number类型时,可以观察到数值的变化。
  • 当装饰的数据类型为class或者Object时,可以观察到自身的赋值的变化,和其属性赋值的变化,即Object.keys(observedObject)返回的所有属性。例子如下。声明ClassA和Model类。

:::

**<font style="color:rgb(27, 27, 27);">Object.keys()</font>** 静态方法返回一个由给定对象自身的可枚举的字符串键属性名组成的数组。

基本数据类型

// for simple type
@State count: number = 0;
// value changing can be observed
this.count = 1;
interface Chicken {
  name: string
  age: number
  color: string
}

const c: Chicken = {
  name: '1',
  age: 2,
  color: '黄绿色'
}
// 获取对象的属性名,返回字符串数组
console.log('', Object.keys(c))

复杂数据类型且嵌套

interface Dog {
  name: string
}

interface Person {
  name: string
  dog: Dog
}

@Component
export struct HelloComponent {
  // 状态变量
  @State message: string = 'Hello, World!';
  @State person: Person = {
    name: 'jack',
    dog: {
      name: '柯基'
    }
  }

  sayHi() {
    console.log('你好呀')
  }

  build() {
    Column() {
      Text(this.message)
      Button('修改 message')
        .onClick(() => {
          this.message = 'Hello,ArkTS'
        })
      Text(JSON.stringify(this.person))
      Button('修改title外层属性')
        .onClick(() => {
          this.person.name = '666'
        })
      Button('修改title嵌套属性')
        .onClick(() => {
          this.person.dog.name = '内部的 666'
          // this.person.dog = {
          //   name: '阿拉斯加'
          // }
        })


    }
  }
}

@Prop父传子_单向传递数据

@Prop 装饰的变量可以和父组件建立单向的同步关系。@Prop 装饰的变量是可变的,但是变化不会同步回其父组件。

@Component
struct SonCom {
  build() {
  }
}

@Entry
@Component
  // FatherCom 父组件
struct FatherCom {
  build() {
    Column() {
      // 子组件
      SonCom()
    }
  }
}

简单类型

简单类型 string、number、boolean、enum

:::success
注意:

  1. 修改父组件数据,会同步更新子组件
  2. 修改子组件@Prop 修饰的数据,子组件 UI 更新,但会被父组件状态更新被覆盖
  3. 通过回调函数的方式修改父组件的数据,然后触发@Prop数据的更新

:::

基础模版:

@Component
struct SonCom {
  @Prop info: string

  build() {
    Button('info:' + this.info)
      .onClick(() => {
        this.info = '子组件修改'
      })
  }
}

@Entry
@Component
struct FatherCom {
  @State info: string = '么么哒'

  build() {
    Column() {
      Text(this.info)
        .onClick(() => {
          this.info = '父组件修改'
        })
      SonCom({
        info: this.info,

      })
    }
    .padding(20)
    .backgroundColor(Color.Orange)
  }
}

:::success
步骤:

  1. 子组件定义修改数据的函数(箭头函数)
  2. 父组件,传入回调函数(必须是箭头函数),
    1. 回调函数中修改数据,并修改
    2. 如果要传递参数,定义形参,并传入实参即可

:::

@Component
struct SonCom {
  @Prop info: string
  changeInfo = (newInfo: string) => {
  }

  build() {
    Button('info:' + this.info)
      .onClick(() => {
        this.changeInfo('改啦')
      })
  }
}

@Entry
@Component
struct FatherCom {
  @State info: string = '么么哒'

  build() {
    Column() {
      Text(this.info)
      SonCom({
        info: this.info,
        changeInfo: (newInfo: string) => {
          this.info = newInfo
        }
      })
    }
    .padding(20)
    .backgroundColor(Color.Orange)
  }
}

复杂类型

复杂类型的做法类似,通过回调函数将需要修改的数据传递给父组件即可

基础模版:

interface User {
  name: string
  age: number
}

@Entry
@Component
struct Index {
  @State
  userInfo: User = {
    name: 'jack',
    age: 18
  }

  build() {
    Column({ space: 20 }) {
      Text('父组件')
        .fontSize(30)
      Text('用户名:' + this.userInfo.name)
        .white()
        .onClick(() => {
          this.userInfo.name = 'rose'
        })
      Text('年龄:' + this.userInfo.age)
        .white()
        .onClick(() &#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/934355.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vs打开unity项目 新建文件后无法自动补全

问题 第一次双击c#文件自动打开vs编辑器的时候能自动补全&#xff0c;再一次在unity中新建c#文件后双击打开发现vs不能自动补全了。每次都要重新打开vs编辑器才能自动补全&#xff0c;导致效率很低&#xff0c;后面发现是没有安装扩展&#xff0c;注意扩展和工具的区别。 解决…

责任链模式的理解和实践

责任链模式&#xff08;Chain of Responsibility&#xff09;是行为型设计模式之一&#xff0c;它通过将多个对象连成一条链&#xff0c;并沿着这条链传递请求&#xff0c;直到有对象处理它为止。这个模式的主要目的是将请求的发送者和接收者解耦&#xff0c;使请求沿着处理链传…

软件工程——期末复习(3)

一、题目类(老师重点提到过的题目) 1、高可靠性是否意味着高可用性&#xff1f;试举例证明自己的观点&#xff1f; 答&#xff1a;高可靠性不意味着高可用性 可靠性说明系统已经准备好&#xff0c;马上可以使用&#xff1b;可用性是系统可以无故障的持续运行&#xff0c;是一…

SList(单链表)

文章目录 一&#xff1a;线性表二&#xff1a;数组2.1数组在内存中的存储 三&#xff1a;链式结构四&#xff1a;单链表4.1概念与结构4.1.1概念4.1.2 结构&#xff08;节点&#xff09;4.1.3链表的性质4.1.4链表的打印 4.2实现单链表 结语 欢迎大家来到我的博客&#xff0c;给生…

VTK知识学习(21)- 数据的读写

1、前言 对于应用程序而言&#xff0c;都需要处理特定的数据&#xff0c;VTK应用程序也不例外。 VTK应用程序所需的数据可以通过两种途径获取: 第一种是生成模型&#xff0c;然后处理这些模型数据(如由类 vtkCylinderSource 生成的多边形数据); 第二种是从外部存储介质里导…

Nignx部署Java服务测试使用的Spring Boot项目Demo

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

虚幻引擎生存建造系统

先做一个建造预览模式&#xff0c;按下按键B后进入建造预览模式 首先创建自定义事件Preview Loop 用射线追踪摆放物体预览位置&#xff0c;并做一个预览材质 增强输入设置按键 每帧判断是否进入建造模式 预览模式制作成功&#xff01; 接着做点击左键放置物品&#xff0…

Blender中使用BlenderGIS插件快速生成城市建筑模型

导入下载 BlenderGIS 插件 去github上下载其压缩包&#xff0c;地址如下&#xff1a; https://github.com/domlysz/BlenderGIS 在BlenderGIS中导入这个插件压缩包&#xff1a; 点击上方菜单栏的编辑&#xff0c;点击偏好设置 在插件>从磁盘安装中导入刚刚下载的压缩包 可…

C语言期末复习

1、任意输入一个半径给r&#xff0c;求圆的面积。 #include <stdio.h> #include <windows.h> void main() { double r,s; printf("输入一个半径给r"); scanf("%lf",&r); sr*r*3.1415926; printf("%lf",s); system(&qu…

深圳大学《2024年904自动控制原理真题》 (完整版)

本文内容&#xff0c;全部选自自动化考研联盟的&#xff1a;《深圳大学904自控考研资料》的真题篇。后续会持续更新更多学校&#xff0c;更多年份的真题&#xff0c;记得关注哦~ 目录 2024年真题 Part1&#xff1a;2024年完整版真题 2024年真题

transformers生成式对话机器人

简介 生成式对话机器人是一种先进的人工智能系统&#xff0c;它能够通过学习大量的自然语言数据来模拟人类进行开放、连贯且创造性的对话。与基于规则或检索式的聊天机器人不同&#xff0c;生成式对话机器人并不局限于预定义的回答集&#xff0c;而是可以根据对话上下文动态地…

NanoLog起步笔记-4-Server端的两个线程

nonolog起步笔记-4-Server端的两个线程 Server端的两个线程两个线程的角色与各自的职责RuntimeLogger::compressionThreadMain线程 详细学习一下相关的代码第三个线程第一次出现原位置swip buffer Server端的两个线程 如前所述&#xff0c;nanolog的server端&#xff0c;相对而…

Freertos任务切换

一、操作系统进行任务切换的时机&#xff1a; 采用信号量实现任务的互斥&#xff1a; 二、FreeRTOS 任务切换场合 PendSV 中断的时候提到了上下文(任务)切换被触发的场合&#xff1a; ● 可以执行一个系统调用 ● 系统滴答定时器(SysTick)中断。 1、执行系统调用 执行系统…

【硬件测试】基于FPGA的4FSK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR

目录 1.算法仿真效果 2.算法涉及理论知识概要 3.Verilog核心程序 4.开发板使用说明和如何移植不同的开发板 5.完整算法代码文件获得 1.算法仿真效果 本文是之前写的文章: 《基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR》 的…

【Vue2+Element-ui】el-dialog宽度适配

1、不适配问题 分辨率100%-页面 分辨率150%-页面 在项目中&#xff0c;我开发分辨率一直是100%&#xff0c;但是客户使用的分辨率不相同&#xff0c;所以宽度要适配 2、解决-封装mixins.js 1)、封装的mixins 我将宽度设置成动态的&#xff0c;因为我的项目中需求不同。 expor…

Tr0ll: 1 Vulnhub靶机渗透笔记

Tr0ll: 1 本博客提供的所有信息仅供学习和研究目的&#xff0c;旨在提高读者的网络安全意识和技术能力。请在合法合规的前提下使用本文中提供的任何技术、方法或工具。如果您选择使用本博客中的任何信息进行非法活动&#xff0c;您将独自承担全部法律责任。本博客明确表示不支…

23. C++STL 9 (priority_queue的使用和适配实现详解)

⭐本篇重点&#xff1a; 1 priority_queue的使用与底层原理 2 使用容器来适配 priority_queue ⭐本篇代码&#xff1a;c学习 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) ⭐标⭐是比较重要的部分 目录 一. priority_queue&#xff08;优先级队列&#xff09;的…

十四、Pod的升级和回滚

当集群中的某个服务需要升级时,我们需要停止目前与该服务相关的所有Pod,然后下载新版本镜像并创建新的Pod。如果集群规模比较大,则这个工作变成了一个挑战,而且先全部停止然后逐步升级的方式会导致较长时间的服务不可用。Kubernetes提供了滚动升级功能来解决上述问题。 如…

中间件--MongoDB部署及初始化js脚本(docker部署,docker-entrypoint-initdb.d,数据迁移,自动化部署)

一、概述 MongoDB是一种常见的Nosql数据库&#xff08;非关系型数据库&#xff09;&#xff0c;以文档&#xff08;Document&#xff09;的形式存储数据。是非关系型数据库中最像关系型数据库的一种。本篇主要介绍下部署和数据迁移。 在 MongoDB 官方镜像部署介绍中&#xff…

MES系统通过eDrawings Pro API开发图纸批量转换工具,实现3D在线查看

声明&#xff1a;部分代码来源于网络&#xff0c;如有疑问&#xff0c;请联系本人删除。 通过C#结合eDrawings API提供接口&#xff0c;实现图纸转换为换.jpg、.tif、.bmp、.stl、.exe、.html、.zip、.edrw、.eprt 和 .eas格式工具&#xff0c;尤其是.html格式&#xff0c;可以…