无涯教程-分类算法 - Python实现函数

为了在Python中实现SVM,无涯教程将从标准库导入开始,如下所示-

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns; sns.set()

接下来,从sklearn.dataset.sample_generator创建具有线性可分离数据的样本数据集,以使用SVM进行分类-

from sklearn.datasets.samples_generator import make_blobs
X, y=make_blobs(n_samples=100, centers=2, random_state=0, cluster_std=0.50)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=summer);

以下是生成具有100个样本和2个聚类的样本数据集后的输出-

Implementing SVM In Python

知道SVM支持判别分类。它通过在二维的情况下简单地找到一条线,在多维的情况下通过歧管来简单地将类彼此划分。它在上述数据集上实现如下-

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c = y, s = 50, cmap = summer)
plt.plot([0.6], [2.1], x, color = black, markeredgewidth = 4, markersize = 12)
for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
plt.plot(xfit, m * xfit + b, -k)
plt.xlim(-1, 3.5);

输出如下-

Output

从上面的输出中可以看到,有三种不同的分隔符可以完美地区分以上示例。

正如讨论的那样,SVM的主要目标是将数据集划分为类,以找到最大的边际超平面(MMH),而不是在类之间绘制零线,可以在每条线周围画出一定宽度的边界,直到最近的点。它可以做到如下-

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c = y, s = 50, cmap = summer)

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
   yfit = m * xfit + b
   plt.plot(xfit, yfit, -k)
   plt.fill_between(xfit, yfit - d, yfit + d, edgecolor=none,
   color = #AAAAAA, alpha = 0.4)
plt.xlim(-1, 3.5);
Maximum Marginal Hyperplane

从上面的输出图像中,无涯教程可以轻松地观察到判别式分类器中的"边距", SVM将选择使边距最大化的线。

接下来,将使用Scikit-Learn的支持向量分类器在此数据上训练SVM模型。在这里,使用线性内核来拟合SVM,如下所示:

from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel = linear, C = 1E10)
model.fit(X, y)

输出如下-

SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=ovr, degree=3, gamma=auto_deprecated,
kernel=linear, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

现在,为了更好地理解,以下内容将绘制2D SVC的决策函数-

def decision_function(model, ax = None, plot_support = True):
   if ax is None:
      ax = plt.gca()
   xlim = ax.get_xlim()
   ylim = ax.get_ylim()

为了判断模型,需要创建网格,如下所示:

x = np.linspace(xlim[0], xlim[1], 30)
y = np.linspace(ylim[0], ylim[1], 30)
Y, X = np.meshgrid(y, x)
xy = np.vstack([X.ravel(), Y.ravel()]).T
P = model.decision_function(xy).reshape(X.shape)

接下来,需要绘制决策边界和边际,如下所示:

ax.contour(X, Y, P, colors=k, levels=[-1, 0, 1], alpha=0.5, linestyles=[--, -, --])

现在,类似地绘制支持向量,如下所示:

if plot_support:
   ax.scatter(model.support_vectors_[:, 0],
   model.support_vectors_[:, 1], s=300, linewidth=1, facecolors=none);
ax.set_xlim(xlim)
ax.set_ylim(ylim)

现在,使用此功能来拟合无涯教程的模型,如下所示:

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=summer)
decision_function(model);
Implementing SVM Model

无涯教程可以从上面的输出中观察到SVM分类器适合数据的边距,即虚线和支持向量,该适合度的关键元素与虚线接触。这些支持向量点存储在分类器的 support_vectors _属性中,如下所示-

model.support_vectors_

输出如下-

array([[0.5323772 , 3.31338909], [2.11114739, 3.57660449], [1.46870582, 1.86947425]])

分类算法 中的 Python实现函数 - 无涯教程网无涯教程网提供为了在Python中实现SVM,无涯教程将从标准库导入开始,如下所示- import numpy as np...https://www.learnfk.com/python-machine-learning/machine-learning-with-python-implementing-svm-in-python.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93271.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WordPress使用子主题插件 Child Theme Wizard,即使主题升级也能够保留以前主题样式

修改WordPress网站样式,主题升级会导致自己定义设置的网站样式丢失,还需要重新设置,很繁琐工作量大,发现在WordPress 中有Child Theme Wizard子主题插件,使用Child Theme Wizard子主题插件,即使主题升级&am…

设计模式-桥接模式

核心思想 适配器模式类似,以后也会遇到意思接近一样的设计模式。在开发中一般多个模式混用,且根据不同的场景进行搭配,桥接模式也是结构型模式将抽象的部分和实现的部分分离,使它们都可以独立的变化。通俗来说,就是通…

初识Java 1-1 面向对象的语言

目录 引用的作用 数据的储存 常见的数据储存方式 特殊储存的基本类型 数组 销毁对象 基本类型的作用域 对象的作用域 创建新类型 - class关键字 方法、参数和返回值 参数列表 编写程序 名称可见性 使用组件 static关键字 Java程序 编程风格(驼峰式…

本地化部署ChatGLM2-6B模型

本地化部署ChatGLM2-6B模型 简介硬件需求 环境部署安装Miniconda创建虚拟环境下载模型和源码安装依赖GPU部署CPU部署 运行程序GPU模式CPU模式命令行运行网页版运行API运行 简介 ChatGLM是清华大学开源的方案,中文效果还是很不错的。基于 General Language Model (G…

聚类分析 | MATLAB实现基于AHC聚类算法可视化

聚类分析 | MATLAB实现基于AHC聚类算法可视化 目录 聚类分析 | MATLAB实现基于AHC聚类算法可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 AHC聚类算法,聚类结果可视化,MATLAB程序。 Agglomerative Hierarchical Clustering(自底…

CG MAGIC分享如何3d Max新版本如何能在旧版本中打开呢?

三维行业来说,无论是三维软件还是插件,都是在持续更新功能的。 3d Max这款软件,自然也不例外,不断推出新版本以提供更多强大的功能和工具。 随着新版本的发布,旧版本用户可能面临一个问题: 3d Max新版本…

java练习8.100m小球落地

题目: 如一个小球从100米高度自由落下,每次落地后就反跳回原高度的一半。 那么求它在第10次落地时,共经过多少米?第10次反弹多高? public static void main(String[] args) {/*假如一个小球从100米高度自由落下,每次落…

PHP自己的框架cookie()使用(完善篇七)

1、PHP自己的框架cookie() 2、cookie类&#xff08;CookieBase.php&#xff09; <?php class CookieBase {/*** 设置cookie*/public static function set($name, $value, $expire 3600, $path , $domain , $secure false, $httponly false) {setcookie($name, $valu…

【InsCode】InsCode打造的JavaSE与Linux命令互融的伪Linux文件系统小项目

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;啥技术都喜欢捣鼓捣鼓&#xff0c;喜欢分享技术、经验、生活。 &#x1f60e;人生感悟&#xff1a;尝尽人生百味&#xff0c;方知世间冷暖。 &#x1f4d6;所属专栏&#xff1a;Ja…

python网络爬虫指南二:多线程网络爬虫、动态内容爬取(待续)

文章目录 一、多线程网络爬虫1.1 线程的基础内容、GIL1.2 创建线程的两种方式1.3 threading.Thread类1.4 线程常用方法和锁机制1.5 生产者-消费者模式1.5.1 生产者-消费者模式简介1.5.2 Condition 类协调线程 1.6 线程中的安全队列1.6 多线程爬取王者荣耀壁纸1.6.1 网页分析1.6…

dolphinschedule配置企微告警服务(WeChat群组)

一、前置说明 ds配置好工作流后&#xff0c;比较重要的一个就是上线后的监控报警服务&#xff0c;如果你是基于企微作为协同办公的&#xff0c;WeChat群组预警必须是要安排上的&#xff0c;文章基于自建应用配合群组方式构建预警群&#xff0c;接入后&#xff0c;任务成功或者…

Java注解与反射

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; Java注解与反射 Java注解和反射是Java语言中两个强大的特性&#xff0c;它们可以一起使用以实现动态的、灵活的编程和元数据处理 注解 Java注解&#xff08;Annotatio…

4.1011

目录 四次挥手中收到乱序的FIN包会如何处理&#xff1f; 在 TIME_WAIT 状态的 TCP 连接&#xff0c;收到 SYN 后会发生什么&#xff1f; 四次挥手中收到乱序的FIN包会如何处理&#xff1f; 如果FIN报文比数据包先道道客户端&#xff0c;此时FIN是一个乱序报文&#xff0c;此时…

【LeetCode-中等题】2. 两数相加

文章目录 题目方法一&#xff1a;借助一个进制位&#xff0c;以及更新尾结点方法一改进&#xff1a;相比较第一种&#xff0c;给head一个临时头节点&#xff08;开始节点&#xff09;&#xff0c;最后返回的时候返回head.next&#xff0c;这样可以省去第一次的判断 题目 方法一…

IdentityServer密码长度超长会导致跳转到登录页

应用系统项目的安全要求越来越高&#xff0c;基本都是采取https等加密证书传输&#xff0c;无法使用https的&#xff0c;也是要求不能明文传输内容&#xff0c;因此做一些等保要求&#xff0c;密码需要加密后才能传输给服务端&#xff0c;所以前端会采取一些密码手段&#xff0…

STM32移植ST77891.69寸屏幕并移植lvgl8.0.2(按键输入设备)一些心得

学习目标: 将ST7789(1.69寸圆角屏SPI)驱动移植+lvgl移植+按键当作输入设备 学习内容: 驱动移植lvgl移植按键移植软件使用正片开始: 先说说这块屏幕的介绍呗 ST7789屏幕是一种高性能的液晶显示屏,它具有高清晰度、高亮度、低功耗等优点。它采用了SPI接口通信,可以实现快速…

webassembly001 webassembly简述

WebAssembly 官方地址:https://webassembly.org/相关历史 https://en.wikipedia.org/wiki/WebAssembly https://brendaneich.com/2015/06/from-asm-js-to-webassembly/WebAssembly&#xff08;缩写为Wasm&#xff09;是一种基于堆栈的虚拟机的二进制指令格式。Wasm 被设计为编…

flask获取请求对象的get和post参数

前言 get请求参数是在URL里面的&#xff0c;post请求参数是放在请求头里面的 get请求&#xff1a; index_page.route("/get") def get():var_a request.args.get("a", "jarvis")return "request:%s,params:%s,var_a:%s" %(request…

【2023深圳杯数学建模A题思路模型与代码分享】

2023深圳杯数学建模A题 A题 影响城市居民身体健康的因素分析解题思路第一问第二问第三问第四问 技术文档第一问完整代码写在最后 A题 影响城市居民身体健康的因素分析 以心脑血管疾病、糖尿病、恶性肿瘤以及慢性阻塞性肺病为代表的慢性非传染性疾病&#xff08;以下简称慢性病…

软件设计师学习笔记7-输入输出技术+总线+可靠性+性能指标

目录 1.输入输出技术 1.1数据传输控制方式 1.2中断处理过程 2.总线 3.可靠性 3.1可靠性指标 3.2串联系统与并联系统 3.3混合模型 4.性能指标 1.输入输出技术 即CPU控制主存与外设交互的过程 1.1数据传输控制方式 (1)程序控制&#xff08;查询&#xff09;方式&…