Qlib上手学习记录

Qlib 是一个面向人工智能的量化投资平台,其目标是通过在量化投资中运用AI技术来发掘潜力、赋能研究并创造价值,从探索投资策略到实现产品化部署。该平台支持多种机器学习建模范式,包括有监督学习、市场动态建模以及强化学习等。

真的是走了很多弯路

step 1.  使用 ananconda 建立环境,要主要必须是 python 3.8

(a308) E:\hw2024\stock>python --version
Python 3.8.20

失败的

git clone https://github.com/microsoft/qlib.git

下了以后 进入 glib folder 后

执行

 pip install .

是会报错的,不管你还什么source 都一样,整了很久

PS D:\ProgramData\git\qlib> pip install .
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Processing d:\programdata\git\qlib
  Installing build dependencies ... error
  error: subprocess-exited-with-error

  × pip subprocess to install build dependencies did not run successfully.
  │ exit code: 1
  ╰─> [9 lines of output]
      Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
      WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1149)'))': /simple/setuptools/
      WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1149)'))': /simple/setuptools/
      WARNING: Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1149)'))': /simple/setuptools/
      WARNING: Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1149)'))': /simple/setuptools/
      WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1149)'))': /simple/setuptools/
      Could not fetch URL https://pypi.tuna.tsinghua.edu.cn/simple/setuptools/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='pypi.tuna.tsinghua.edu.cn', port=443): Max retries exceeded with url: /simple/setuptools/ (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1149)'))) - skipping
      ERROR: Could not find a version that satisfies the requirement setuptools (from versions: none)
      ERROR: No matching distribution found for setuptools
      [end of output]

  note: This error originates from a subprocess, and is likely not a problem with pip.
error: subprocess-exited-with-error

× pip subprocess to install build dependencies did not run successfully.
│ exit code: 1
╰─> See above for output.

note: This error originates from a subprocess, and is likely not a problem with pip.
PS D:\ProgramData\git\qlib> pip install. -i https://pypi.org/simple/
ERROR: unknown command "install." - maybe you meant "install"
PS D:\ProgramData\git\qlib> pip install . -i https://pypi.org/simple/
Looking in indexes: https://pypi.org/simple/

使用前最好看下这个

021 年之前发布的功能未在此列出。

Qlib 是一个开源的、面向 AI 的量化投资平台,旨在通过 AI 技术实现量化投资的潜力,赋能研究,并创造价值,从探索想法到实施生产。Qlib 支持多种机器学习建模范式,包括监督学习、市场动态建模和强化学习。

越来越多的 SOTA 量化研究工作/论文在 Qlib 中发布,以协作解决量化投资中的关键挑战。例如,1) 使用监督学习从丰富和异构的金融数据中挖掘市场的复杂非线性模式,2) 使用自适应概念漂移技术建模金融市场的动态特性,3) 使用强化学习建模连续投资决策并协助投资者优化其交易策略。

它包含了完整的机器学习流程,包括数据处理、模型训练、回测;并涵盖了量化投资的整个链条:阿尔法挖掘、风险建模、投资组合优化和订单执行。更多详情,请参阅我们的论文 "Qlib: 一个面向 AI 的量化投资平台"。

框架、教程、数据与 DevOps量化研究中的主要挑战与解决方案
- 计划- 量化研究中的主要挑战与解决方案
- Qlib 框架- 预测:寻找有价值的信号/模式
- 快速开始- 适应市场动态
- 安装- 强化学习:建模连续决策
- 数据准备- 量化模型(论文)库
- 自动量化研究工作流程- 运行单个模型
- 通过代码构建定制量化研究工作流程- 运行多个模型
- 量化数据集库
- 学习框架
- 更多关于 Qlib
- 离线模式与在线模式
- Qlib 数据服务器的性能
- 相关报告
- 联系我们
- 贡献

计划

正在开发中的新功能(按预计发布时间排序)。 您的反馈对这些功能非常重要。

Qlib 框架

Qlib 的高级框架如上所示(用户可以在深入了解时找到 Qlib 设计的详细框架)。 这些组件被设计为松耦合模块,每个组件都可以独立使用。

Qlib 提供了强大的基础设施来支持量化研究。数据始终是一个重要部分。 设计了一个强大的学习框架来支持多样化的学习范式(例如强化学习、监督学习)和不同层次的模式(例如市场动态建模)。 通过建模市场,交易策略将生成交易决策并执行。不同层次或粒度的多个交易策略和执行器可以嵌套在一起进行优化和运行。 最后,将提供全面的分析,模型可以在低成本下在线服务。

快速开始

本快速开始指南试图展示

  1. 使用 Qlib 构建完整的量化研究工作流程并尝试您的想法非常容易。
  2. 尽管使用公共数据简单模型,机器学习技术在实际量化投资中表现非常出色

以下是一个快速**演示**,展示了如何安装 Qlib 并使用 qrun 运行 LightGBM。但是,请确保您已按照说明准备好数据。

安装

此表展示了 Qlib 支持的 Python 版本:

使用 pip 安装从源码安装绘图
Python 3.7✔️✔️✔️
Python 3.8✔️✔️✔️
Python 3.9✔️

注意:

  1. Conda 建议用于管理您的 Python 环境。在某些情况下,在 conda 环境之外使用 Python 可能会导致缺少头文件,从而导致某些包的安装失败。
  2. 请注意,在 Python 3.6 中安装 cython 时,从源码安装 Qlib 会引发一些错误。如果用户在机器上使用 Python 3.6,建议升级 Python 到 3.7 版本或使用 conda 的 Python 从源码安装 Qlib
  3. 对于 Python 3.9,Qlib 支持运行训练模型、回测和绘制大部分相关图表(包括 notebook 中的图表)。然而,目前不支持绘制模型性能图表,我们将在未来依赖包升级时修复此问题。
  4. Qlib 需要 tables 包,tables 中的 hdf5 不支持 python3.9。

使用 pip 安装

用户可以轻松地通过以下命令使用 pip 安装 Qlib

  pip install pyqlib

注意:pip 将安装最新的稳定版 qlib。然而,qlib 的主分支目前正在积极开发中。如果您想测试主分支中的最新脚本或功能,请使用以下方法安装 qlib。

从源代码安装

此外,用户可以根据以下步骤,通过源代码安装最新的开发版 Qlib

  • 在从源代码安装 Qlib 之前,用户需要安装一些依赖项:

    pip install numpy
    pip install --upgrade cython
    
  • 按如下方式克隆仓库并安装 Qlib

    git clone https://github.com/microsoft/qlib.git && cd qlib
    pip install .  # 推荐开发时使用 `pip install -e .[dev]`。详细内容请查阅文档 docs/developer/code_standard_and_dev_guide.rst
    

    注意:您也可以使用 python setup.py install 来安装 Qlib。但这不是推荐的方法。它将跳过 pip 并可能导致不明显的问题。例如,只有使用命令 pip install . 可以覆盖通过 pip install pyqlib 安装的稳定版,而使用命令 python setup.py install 不能

提示:如果在您的环境中无法安装 Qlib 或运行示例运行失败,比较您的步骤和 CI 工作流 可能帮助您找到问题。

Mac 用户提示:如果您使用的是配备 M1 芯片的 Mac,构建 LightGBM 的 wheel 包时可能会遇到问题,这是因为缺少来自 OpenMP 的依赖项。要解决这个问题,首先使用 brew install libomp 安装 op.enmp,然后运行 pip install . 进行构建。

pip install numpy
pip install --upgrade cython  

==》 要改成 conda install cython

最后,不要使用魔法

pip install pyqlib

安装起来了,装的依赖真心不少

(a308) E:\hw2024\stock>pip install pyqlib
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pyqlib in d:\programdata\envs\a308\lib\site-packages\pyqlib-0.9.5.99-py3.8-win-amd64.egg (0.9.5.99)
Collecting numpy<1.24,>=1.12.0 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/4c/42/6274f92514fbefcb1caa66d56d82ac7ac89f7652c0cef1e159a4b79e09f1/numpy-1.23.5-cp38-cp38-win_amd64.whl (14.7 MB)
     ---------------------------------------- 14.7/14.7 MB 17.1 MB/s eta 0:00:00
Requirement already satisfied: pandas>=0.25.1 in d:\programdata\envs\a308\lib\site-packages (from pyqlib) (2.0.3)
Collecting scipy>=1.7.3 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/32/8e/7f403535ddf826348c9b8417791e28712019962f7e90ff845896d6325d09/scipy-1.10.1-cp38-cp38-win_amd64.whl (42.2 MB)
     ---------------------------------------- 42.2/42.2 MB 19.3 MB/s eta 0:00:00
Collecting scs<=3.2.4 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6a/9f/d18c7f5ef2764c7ea10cf0077b6a953fc56afade1bb641571916143255dd/scs-3.2.4-cp38-cp38-win_amd64.whl (8.4 MB)
     ---------------------------------------- 8.4/8.4 MB 15.8 MB/s eta 0:00:00
Requirement already satisfied: requests>=2.18.0 in d:\programdata\envs\a308\lib\site-packages (from pyqlib) (2.32.3)
Collecting sacred>=0.7.4 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/01/d9/67a53f465395e0be45ac8f780938e0a551d82d4b864e5a9394ab66168432/sacred-0.8.7-py2.py3-none-any.whl (108 kB)
Collecting python-socketio (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7e/9a/52b94c8c9516e07844d3da3d0da3e68649f172aeeace8d7a1becca9e6111/python_socketio-5.11.4-py3-none-any.whl (76 kB)
Collecting redis>=3.0.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/3c/5f/fa26b9b2672cbe30e07d9a5bdf39cf16e3b80b42916757c5f92bca88e4ba/redis-5.2.1-py3-none-any.whl (261 kB)
Collecting python-redis-lock>=3.3.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/09/70/c5dfaec2085d9be10792704f108543ba1802e228bf040632c673066d8e78/python_redis_lock-4.0.0-py3-none-any.whl (12 kB)
Collecting schedule>=0.6.0 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/20/a7/84c96b61fd13205f2cafbe263cdb2745965974bdf3e0078f121dfeca5f02/schedule-1.2.2-py3-none-any.whl (12 kB)
Collecting cvxpy>=1.0.21 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a1/68/44958a503a7882f032a55006eee8da037018cd0d755b6a1618c78ff757f1/cvxpy-1.5.2-cp38-cp38-win_amd64.whl (1.1 MB)
     ---------------------------------------- 1.1/1.1 MB 2.5 MB/s eta 0:00:00
Collecting hyperopt==0.1.2 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/63/12/704382c3081df3ae3f9d96fe6afb62efa2fa9749be20c301cd2797fb0b52/hyperopt-0.1.2-py3-none-any.whl (115 kB)
Collecting fire>=0.3.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6b/b6/82c7e601d6d3c3278c40b7bd35e17e82aa227f050aa9f66cb7b7fce29471/fire-0.7.0.tar.gz (87 kB)
  Preparing metadata (setup.py) ... done
Collecting statsmodels (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/15/93/62c79bb548988201078242d903de47666a08167de8e4beceb32157d75d5f/statsmodels-0.14.1-cp38-cp38-win_amd64.whl (10.0 MB)
     ---------------------------------------- 10.0/10.0 MB 9.3 MB/s eta 0:00:00
Collecting xlrd>=1.0.0 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a6/0c/c2a72d51fe56e08a08acc85d13013558a2d793028ae7385448a6ccdfae64/xlrd-2.0.1-py2.py3-none-any.whl (96 kB)
Collecting plotly>=4.12.0 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e5/ae/580600f441f6fc05218bd6c9d5794f4aef072a7d9093b291f1c50a9db8bc/plotly-5.24.1-py3-none-any.whl (19.1 MB)
     ---------------------------------------- 19.1/19.1 MB 18.2 MB/s eta 0:00:00
Collecting matplotlib>=3.3 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/16/51/58b0b9de42fe1e665736d9286f88b5f1556a0e22bed8a71f468231761083/matplotlib-3.7.5-cp38-cp38-win_amd64.whl (7.5 MB)
     ---------------------------------------- 7.5/7.5 MB 11.0 MB/s eta 0:00:00
Collecting tables>=3.6.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6a/44/4c397ecf3140bef6fb1a4e0397130c50d0bf94282033f1209b0259656679/tables-3.8.0-cp38-cp38-win_amd64.whl (3.6 MB)
     ---------------------------------------- 3.6/3.6 MB 8.5 MB/s eta 0:00:00
Collecting pyyaml>=5.3.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/75/8a/ee831ad5fafa4431099aa4e078d4c8efd43cd5e48fbc774641d233b683a9/PyYAML-6.0.2-cp38-cp38-win_amd64.whl (162 kB)
Collecting mlflow<=1.30.0,>=1.12.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/33/fe/c2c9b72585609344e70606b23c642c8f069997cc63aee55f746527ecd053/mlflow-1.30.0-py3-none-any.whl (17.0 MB)
     ---------------------------------------- 17.0/17.0 MB 14.9 MB/s eta 0:00:00
Collecting packaging<22 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/05/8e/8de486cbd03baba4deef4142bd643a3e7bbe954a784dc1bb17142572d127/packaging-21.3-py3-none-any.whl (40 kB)
Collecting tqdm (from pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl (78 kB)
Collecting loguru (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/0c/29/0348de65b8cc732daa3e33e67806420b2ae89bdce2b04af740289c5c6c8c/loguru-0.7.3-py3-none-any.whl (61 kB)
Collecting lightgbm>=3.3.0 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d9/28/3be76b591a2e14a031b681b8283acf1dec2ad521f6f1701b7957df68c466/lightgbm-4.5.0-py3-none-win_amd64.whl (1.4 MB)
     ---------------------------------------- 1.4/1.4 MB 2.7 MB/s eta 0:00:00
Collecting tornado (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/61/cc/58b1adeb1bb46228442081e746fcdbc4540905c87e8add7c277540934edb/tornado-6.4.2-cp38-abi3-win_amd64.whl (438 kB)
Collecting joblib>=0.17.0 (from pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl (301 kB)
Collecting ruamel.yaml<=0.17.36 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c3/06/20feed488ef1551074657d334cafd8aa094f7f1a6ae9d70df13c76bf5491/ruamel.yaml-0.17.36-py3-none-any.whl (106 kB)
Collecting pymongo==3.7.2 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/0f/3a/b90cfa7e27fa92244925826538fa2cf80fed3cbd20a413fd0c1b9705d820/pymongo-3.7.2.tar.gz (628 kB)
     ---------------------------------------- 628.6/628.6 kB 11.8 MB/s eta 0:00:00
  Preparing metadata (setup.py) ... done
Collecting scikit-learn>=0.22 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/52/2d/ad6928a578c78bb0e44e34a5a922818b14c56716b81d145924f1f291416f/scikit_learn-1.3.2-cp38-cp38-win_amd64.whl (9.3 MB)
     ---------------------------------------- 9.3/9.3 MB 14.8 MB/s eta 0:00:00
Requirement already satisfied: dill in d:\programdata\envs\a308\lib\site-packages\dill-0.3.9-py3.8.egg (from pyqlib) (0.3.9)
Requirement already satisfied: filelock in d:\programdata\envs\a308\lib\site-packages (from pyqlib) (3.16.1)
Requirement already satisfied: jinja2 in d:\programdata\envs\a308\lib\site-packages (from pyqlib) (3.1.4)
Requirement already satisfied: gym in d:\programdata\envs\a308\lib\site-packages\gym-0.26.2-py3.8.egg (from pyqlib) (0.26.2)
Requirement already satisfied: cryptography in d:\programdata\envs\a308\lib\site-packages\cryptography-44.0.0-py3.8-win-amd64.egg (from pyqlib) (44.0.0)
Requirement already satisfied: protobuf<=3.20.1 in d:\programdata\envs\a308\lib\site-packages\protobuf-3.20.1-py3.8.egg (from pyqlib) (3.20.1)
Requirement already satisfied: six in d:\programdata\envs\a308\lib\site-packages (from hyperopt==0.1.2->pyqlib) (1.17.0)
Requirement already satisfied: networkx in d:\programdata\envs\a308\lib\site-packages (from hyperopt==0.1.2->pyqlib) (3.1)
Collecting future (from hyperopt==0.1.2->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/da/71/ae30dadffc90b9006d77af76b393cb9dfbfc9629f339fc1574a1c52e6806/future-1.0.0-py3-none-any.whl (491 kB)
Collecting osqp>=0.6.2 (from cvxpy>=1.0.21->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/64/5a/d860cb1679cd97a38d9227be9247853568b76b32751b83052899eaede73a/osqp-0.6.7.post3-cp38-cp38-win_amd64.whl (292 kB)
Collecting ecos>=2 (from cvxpy>=1.0.21->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a2/5e/8c5f561ae51f7faf1d2cb91299d4802a7b436a871408a72185dd53cc66da/ecos-2.0.14-cp38-cp38-win_amd64.whl (72 kB)
Collecting clarabel>=0.5.0 (from cvxpy>=1.0.21->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/36/be/110fe7ca190e024e3185d6351645346b785da6933ce3fb382d4811215f8c/clarabel-0.9.0-cp37-abi3-win_amd64.whl (736 kB)
     ---------------------------------------- 736.4/736.4 kB 1.1 MB/s eta 0:00:00
INFO: pip is looking at multiple versions of cvxpy to determine which version is compatible with other requirements. This could take a while.
Collecting cvxpy>=1.0.21 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7b/e3/cbaa9acfca9f390f31490ff695e65a79527bb66827d5e89ccc366b9bc992/cvxpy-1.5.1-cp38-cp38-win_amd64.whl (1.1 MB)
     ---------------------------------------- 1.1/1.1 MB 1.8 MB/s eta 0:00:00
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d8/60/f8394e67325320a56f7061caaecf1742f237f53be08f2fba4b001cb168a9/cvxpy-1.5.0-cp38-cp38-win_amd64.whl (1.1 MB)
     ---------------------------------------- 1.1/1.1 MB 1.9 MB/s eta 0:00:00
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a9/19/9e00a33099ac29f744a3d35905fea56c9e05950ffdbbd762062b02e8bb2e/cvxpy-1.4.4-cp38-cp38-win_amd64.whl (1.0 MB)
     ---------------------------------------- 1.0/1.0 MB 1.9 MB/s eta 0:00:00
Collecting pybind11 (from cvxpy>=1.0.21->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/13/2f/0f24b288e2ce56f51c920137620b4434a38fd80583dbbe24fc2a1656c388/pybind11-2.13.6-py3-none-any.whl (243 kB)
Collecting termcolor (from fire>=0.3.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d9/5f/8c716e47b3a50cbd7c146f45881e11d9414def768b7cd9c5e6650ec2a80a/termcolor-2.4.0-py3-none-any.whl (7.7 kB)
Collecting contourpy>=1.0.1 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/96/1b/b05cd42c8d21767a0488b883b38658fb9a45f86c293b7b42521a8113dc5d/contourpy-1.1.1-cp38-cp38-win_amd64.whl (477 kB)
Collecting cycler>=0.10 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl (8.3 kB)
Collecting fonttools>=4.22.0 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/81/94/e72ddf2c7c76cc05c82cfffb59eb4d917b531ba47a13499ce16fe2ffeb3b/fonttools-4.55.2-cp38-cp38-win_amd64.whl (1.5 MB)
     ---------------------------------------- 1.5/1.5 MB 4.8 MB/s eta 0:00:00
Collecting kiwisolver>=1.0.1 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/52/77/7e04cca2ff1dc6ee6b7654cebe233de72b7a3ec5616501b6f3144fb70740/kiwisolver-1.4.7-cp38-cp38-win_amd64.whl (55 kB)
Collecting pillow>=6.2.0 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f2/75/3cb820b2812405fc7feb3d0deb701ef0c3de93dc02597115e00704591bc9/pillow-10.4.0-cp38-cp38-win_amd64.whl (2.6 MB)
     ---------------------------------------- 2.6/2.6 MB 9.8 MB/s eta 0:00:00
Collecting pyparsing>=2.3.1 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e5/0c/0e3c05b1c87bb6a1c76d281b0f35e78d2d80ac91b5f8f524cebf77f51049/pyparsing-3.1.4-py3-none-any.whl (104 kB)
Requirement already satisfied: python-dateutil>=2.7 in d:\programdata\envs\a308\lib\site-packages (from matplotlib>=3.3->pyqlib) (2.9.0.post0)
Collecting importlib-resources>=3.2.0 (from matplotlib>=3.3->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e1/6a/4604f9ae2fa62ef47b9de2fa5ad599589d28c9fd1d335f32759813dfa91e/importlib_resources-6.4.5-py3-none-any.whl (36 kB)
Collecting click<9,>=7.0 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/00/2e/d53fa4befbf2cfa713304affc7ca780ce4fc1fd8710527771b58311a3229/click-8.1.7-py3-none-any.whl (97 kB)
Collecting cloudpickle<3 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/15/80/44286939ca215e88fa827b2aeb6fa3fd2b4a7af322485c7170d6f9fd96e0/cloudpickle-2.2.1-py3-none-any.whl (25 kB)
Collecting databricks-cli<1,>=0.8.7 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ae/a3/d56f8382c40899301f327d1c881278b09c9b8bc301c2c111633a0346d06e/databricks_cli-0.18.0-py2.py3-none-any.whl (150 kB)
Collecting entrypoints<1 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/35/a8/365059bbcd4572cbc41de17fd5b682be5868b218c3c5479071865cab9078/entrypoints-0.4-py3-none-any.whl (5.3 kB)
Collecting gitpython<4,>=2.1.0 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e9/bd/cc3a402a6439c15c3d4294333e13042b915bbeab54edc457c723931fed3f/GitPython-3.1.43-py3-none-any.whl (207 kB)
Collecting pytz<2023 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2e/09/fbd3c46dce130958ee8e0090f910f1fe39e502cc5ba0aadca1e8a2b932e5/pytz-2022.7.1-py2.py3-none-any.whl (499 kB)
Collecting importlib-metadata!=4.7.0,<6,>=3.7.0 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/35/07/fd0145f9e57356098fe15415dbb9616fd628373ecf88faab9aae0c988d2c/importlib_metadata-5.2.0-py3-none-any.whl (21 kB)
Collecting sqlparse<1,>=0.4.0 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7a/13/5f6654c9d915077fae255686ca6fa42095b62b7337e3e1aa9e82caa6f43a/sqlparse-0.5.2-py3-none-any.whl (44 kB)
Collecting alembic<2 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/cb/06/8b505aea3d77021b18dcbd8133aa1418f1a1e37e432a465b14c46b2c0eaa/alembic-1.14.0-py3-none-any.whl (233 kB)
Collecting docker<7,>=4.0.0 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/db/be/3032490fa33b36ddc8c4b1da3252c6f974e7133f1a50de00c6b85cca203a/docker-6.1.3-py3-none-any.whl (148 kB)
Collecting Flask<3 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fd/56/26f0be8adc2b4257df20c1c4260ddd0aa396cf8e75d90ab2f7ff99bc34f9/flask-2.3.3-py3-none-any.whl (96 kB)
Collecting pandas>=0.25.1 (from pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ca/4e/d18db7d5ff9d28264cd2a7e2499b8701108f0e6c698e382cfd5d20685c21/pandas-1.5.3-cp38-cp38-win_amd64.whl (11.0 MB)
     ---------------------------------------- 11.0/11.0 MB 14.6 MB/s eta 0:00:00
Collecting prometheus-flask-exporter<1 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/78/17/54b7f92f25de491f746002e1e734fdc260edf2dd75c4777c7b77b49b7e31/prometheus_flask_exporter-0.23.1-py3-none-any.whl (18 kB)
Collecting querystring-parser<2 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/88/6b/572b2590fd55114118bf08bde63c0a421dcc82d593700f3e2ad89908a8a9/querystring_parser-1.2.4-py2.py3-none-any.whl (7.9 kB)
Collecting sqlalchemy<2,>=1.4.0 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/5a/c8/df13167d3825683e0542965dfcfbc3e95b2f31469fd389dbb0390d39ff4c/SQLAlchemy-1.4.54-cp38-cp38-win_amd64.whl (1.6 MB)
     ---------------------------------------- 1.6/1.6 MB 14.2 MB/s eta 0:00:00
Collecting waitress<3 (from mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/58/6a/b4b5c582e04e837e4422cab6ec9de7fc10ca7ad7f4e370bb89d280d39552/waitress-2.1.2-py3-none-any.whl (57 kB)
Collecting tenacity>=6.2.0 (from plotly>=4.12.0->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b6/cb/b86984bed139586d01532a587464b5805f12e397594f19f931c4c2fbfa61/tenacity-9.0.0-py3-none-any.whl (28 kB)
Collecting async-timeout>=4.0.3 (from redis>=3.0.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fe/ba/e2081de779ca30d473f21f5b30e0e737c438205440784c7dfc81efc2b029/async_timeout-5.0.1-py3-none-any.whl (6.2 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\programdata\envs\a308\lib\site-packages (from requests>=2.18.0->pyqlib) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in d:\programdata\envs\a308\lib\site-packages (from requests>=2.18.0->pyqlib) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\programdata\envs\a308\lib\site-packages (from requests>=2.18.0->pyqlib) (2.2.3)
Requirement already satisfied: certifi>=2017.4.17 in d:\programdata\envs\a308\lib\site-packages (from requests>=2.18.0->pyqlib) (2024.8.30)
Collecting ruamel.yaml.clib>=0.2.7 (from ruamel.yaml<=0.17.36->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/24/ce/6f587283caaff93d0b9cac2f244fcda686897e83401bb1aa91803db7bf94/ruamel.yaml.clib-0.2.8-cp38-cp38-win_amd64.whl (118 kB)
Collecting docopt-ng<1.0,>=0.9 (from sacred>=0.7.4->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6c/4a/c3b77fc1a24510b08918b43a473410c0168f6e657118807015f1f1edceea/docopt_ng-0.9.0-py3-none-any.whl (16 kB)
Collecting jsonpickle>=2.2.0 (from sacred>=0.7.4->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a1/64/815460f86d94c9e1431800a75061719824c6fef14d88a6117eba3126cd5b/jsonpickle-4.0.0-py3-none-any.whl (46 kB)
Collecting munch<5.0,>=2.5 (from sacred>=0.7.4->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/56/b3/7c69b37f03260a061883bec0e7b05be7117c1b1c85f5212c72c8c2bc3c8c/munch-4.0.0-py2.py3-none-any.whl (9.9 kB)
Collecting wrapt<2.0,>=1.0 (from sacred>=0.7.4->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/67/71/b9ce92b7820e9bd8e2c727d806a2e4e8c9d2a3e839ffadde2d0e44d84c0b/wrapt-1.17.0-cp38-cp38-win_amd64.whl (38 kB)
Collecting py-cpuinfo>=4.0 (from sacred>=0.7.4->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e0/a9/023730ba63db1e494a271cb018dcd361bd2c917ba7004c3e49d5daf795a2/py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)
Collecting colorama>=0.4 (from sacred>=0.7.4->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Collecting threadpoolctl>=2.0.0 (from scikit-learn>=0.22->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl (18 kB)
Requirement already satisfied: cython>=0.29.21 in d:\programdata\envs\a308\lib\site-packages (from tables>=3.6.1->pyqlib) (3.0.11)
Collecting numexpr>=2.6.2 (from tables>=3.6.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/34/28/286d73ab378eefc99ef07b208c68d9be968518c8b0ce8067e438c1a84ef1/numexpr-2.8.6-cp38-cp38-win_amd64.whl (94 kB)
Collecting blosc2~=2.0.0 (from tables>=3.6.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/9f/91/a356e1870f258e337b9986b9a58c75e0cb960c1d89daafe01677d72b21d6/blosc2-2.0.0-cp38-cp38-win_amd64.whl (2.0 MB)
     ---------------------------------------- 2.0/2.0 MB 15.6 MB/s eta 0:00:00
Collecting cffi>=1.12 (from cryptography->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2f/70/80c33b044ebc79527447fd4fbc5455d514c3bb840dede4455de97da39b4d/cffi-1.17.1-cp38-cp38-win_amd64.whl (181 kB)
Collecting gym_notices>=0.0.4 (from gym->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/25/26/d786c6bec30fe6110fd3d22c9a273a2a0e56c0b73b93e25ea1af5a53243b/gym_notices-0.0.8-py3-none-any.whl (3.0 kB)
Requirement already satisfied: MarkupSafe>=2.0 in d:\programdata\envs\a308\lib\site-packages (from jinja2->pyqlib) (2.1.5)
Collecting win32-setctime>=1.0.0 (from loguru->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/0a/e6/a7d828fef907843b2a5773ebff47fb79ac0c1c88d60c0ca9530ee941e248/win32_setctime-1.1.0-py3-none-any.whl (3.6 kB)
Collecting bidict>=0.21.0 (from python-socketio->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/99/37/e8730c3587a65eb5645d4aba2d27aae48e8003614d6aaf15dda67f702f1f/bidict-0.23.1-py3-none-any.whl (32 kB)
Collecting python-engineio>=4.8.0 (from python-socketio->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fc/74/1cec7f067ade8ed0351aed93ae6cfcd070e803d60fa70ecac6705de62936/python_engineio-4.10.1-py3-none-any.whl (57 kB)
Collecting patsy>=0.5.4 (from statsmodels->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/87/2b/b50d3d08ea0fc419c183a84210571eba005328efa62b6b98bc28e9ead32a/patsy-1.0.1-py2.py3-none-any.whl (232 kB)
Collecting Mako (from alembic<2->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a7/d8/c516e830071b849ad60ee1026315bb8566381ac648ac8bda314569b4b7e2/Mako-1.3.7-py3-none-any.whl (78 kB)
Requirement already satisfied: typing-extensions>=4 in d:\programdata\envs\a308\lib\site-packages (from alembic<2->mlflow<=1.30.0,>=1.12.1->pyqlib) (4.12.2)
Collecting msgpack (from blosc2~=2.0.0->tables>=3.6.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a4/b7/1517b4d65caf3394c0e5f4e557dda8eaaed2ad00b4517b7d4c7c2bc86f77/msgpack-1.1.0-cp38-cp38-win_amd64.whl (74 kB)
Collecting pycparser (from cffi>=1.12->cryptography->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl (117 kB)
Collecting pyjwt>=1.7.0 (from databricks-cli<1,>=0.8.7->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/79/84/0fdf9b18ba31d69877bd39c9cd6052b47f3761e9910c15de788e519f079f/PyJWT-2.9.0-py3-none-any.whl (22 kB)
Collecting oauthlib>=3.1.0 (from databricks-cli<1,>=0.8.7->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7e/80/cab10959dc1faead58dc8384a781dfbf93cb4d33d50988f7a69f1b7c9bbe/oauthlib-3.2.2-py3-none-any.whl (151 kB)
Collecting tabulate>=0.7.7 (from databricks-cli<1,>=0.8.7->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-any.whl (35 kB)
Collecting websocket-client>=0.32.0 (from docker<7,>=4.0.0->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl (58 kB)
Collecting pywin32>=304 (from docker<7,>=4.0.0->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/b7/e8/729b049e3c5c5449049d6036edf7a24a6ba785a9a1d5f617b638a9b444eb/pywin32-308-cp38-cp38-win_amd64.whl (6.6 MB)
     ---------------------------------------- 6.6/6.6 MB 19.5 MB/s eta 0:00:00
Collecting Werkzeug>=2.3.7 (from Flask<3->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6c/69/05837f91dfe42109203ffa3e488214ff86a6d68b2ed6c167da6cdc42349b/werkzeug-3.0.6-py3-none-any.whl (227 kB)
Collecting itsdangerous>=2.1.2 (from Flask<3->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/04/96/92447566d16df59b2a776c0fb82dbc4d9e07cd95062562af01e408583fc4/itsdangerous-2.2.0-py3-none-any.whl (16 kB)
Collecting blinker>=1.6.2 (from Flask<3->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/bb/2a/10164ed1f31196a2f7f3799368a821765c62851ead0e630ab52b8e14b4d0/blinker-1.8.2-py3-none-any.whl (9.5 kB)
Collecting gitdb<5,>=4.0.1 (from gitpython<4,>=2.1.0->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/fd/5b/8f0c4a5bb9fd491c277c21eff7ccae71b47d43c4446c9d0c6cff2fe8c2c4/gitdb-4.0.11-py3-none-any.whl (62 kB)
Collecting zipp>=0.5 (from importlib-metadata!=4.7.0,<6,>=3.7.0->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/62/8b/5ba542fa83c90e09eac972fc9baca7a88e7e7ca4b221a89251954019308b/zipp-3.20.2-py3-none-any.whl (9.2 kB)
Collecting qdldl (from osqp>=0.6.2->cvxpy>=1.0.21->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2c/1d/3ee22c846e507d16c2c019f33626a833522fcebb7b24e50ad1549350cd8f/qdldl-0.1.7.post4-cp38-cp38-win_amd64.whl (86 kB)
Collecting prometheus-client (from prometheus-flask-exporter<1->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ff/c2/ab7d37426c179ceb9aeb109a85cda8948bb269b7561a0be870cc656eefe4/prometheus_client-0.21.1-py3-none-any.whl (54 kB)
Collecting simple-websocket>=0.10.0 (from python-engineio>=4.8.0->python-socketio->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/52/59/0782e51887ac6b07ffd1570e0364cf901ebc36345fea669969d2084baebb/simple_websocket-1.1.0-py3-none-any.whl (13 kB)
Collecting greenlet!=0.4.17 (from sqlalchemy<2,>=1.4.0->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d3/50/7b7a3e10ed82c760c1fd8d3167a7c95508e9fdfc0b0604f05ed1a9a9efdc/greenlet-3.1.1-cp38-cp38-win_amd64.whl (298 kB)
Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython<4,>=2.1.0->mlflow<=1.30.0,>=1.12.1->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a7/a5/10f97f73544edcdef54409f1d839f6049a0d79df68adbc1ceb24d1aaca42/smmap-5.0.1-py3-none-any.whl (24 kB)
Collecting wsproto (from simple-websocket>=0.10.0->python-engineio>=4.8.0->python-socketio->pyqlib)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/78/58/e860788190eba3bcce367f74d29c4675466ce8dddfba85f7827588416f01/wsproto-1.2.0-py3-none-any.whl (24 kB)
Collecting h11<1,>=0.9.0 (from wsproto->simple-websocket>=0.10.0->python-engineio>=4.8.0->python-socketio->pyqlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl (58 kB)
Building wheels for collected packages: pymongo, fire
  Building wheel for pymongo (setup.py) ... done
  Created wheel for pymongo: filename=pymongo-3.7.2-cp38-cp38-win_amd64.whl size=312427 sha256=9eb798a0a168ba950cf6489f3039b10b9730fadbe6f2b5bd5b3c00217953755b
  Stored in directory: c:\users\administrator\appdata\local\pip\cache\wheels\b4\a6\14\10536b68552027ca1f7e89df8b999520caaaa05ed154f0feda
  Building wheel for fire (setup.py) ... done
  Created wheel for fire: filename=fire-0.7.0-py3-none-any.whl size=114262 sha256=ee2f359ccbe9387c05af684f664788b387395e3d9d5031d0e4cf8ca981fdc117
  Stored in directory: c:\users\administrator\appdata\local\pip\cache\wheels\1d\05\c2\9eacbbffa3b9f5b1446a30b222097dbccc5314ade2ea1ddb40
Successfully built pymongo fire
Installing collected packages: pywin32, pytz, pymongo, py-cpuinfo, gym_notices, zipp, xlrd, wrapt, win32-setctime, Werkzeug, websocket-client, waitress, tornado, threadpoolctl, termcolor, tenacity, tabulate, sqlparse, smmap, schedule, ruamel.yaml.clib, querystring-parser, pyyaml, pyparsing, pyjwt, pycparser, pybind11, prometheus-client, pillow, oauthlib, numpy, munch, msgpack, Mako, kiwisolver, jsonpickle, joblib, itsdangerous, h11, greenlet, future, fonttools, entrypoints, docopt-ng, cycler, colorama, cloudpickle, blinker, bidict, async-timeout, wsproto, tqdm, sqlalchemy, scipy, ruamel.yaml, redis, patsy, pandas, packaging, numexpr, loguru, importlib-resources, importlib-metadata, gitdb, fire, contourpy, click, cffi, blosc2, tables, statsmodels, simple-websocket, scs, scikit-learn, qdldl, python-redis-lock, plotly, matplotlib, lightgbm, hyperopt, gitpython, Flask, ecos, docker, databricks-cli, clarabel, alembic, sacred, python-engineio, prometheus-flask-exporter, osqp, python-socketio, mlflow, cvxpy
  Attempting uninstall: pytz
    Found existing installation: pytz 2024.2
    Uninstalling pytz-2024.2:
      Successfully uninstalled pytz-2024.2
  Attempting uninstall: numpy
    Found existing installation: numpy 1.24.4
    Uninstalling numpy-1.24.4:
      Successfully uninstalled numpy-1.24.4
  WARNING: Failed to remove contents in a temporary directory 'D:\ProgramData\envs\a308\Lib\site-packages\~umpy'.
  You can safely remove it manually.
  Attempting uninstall: pandas
    Found existing installation: pandas 2.0.3
    Uninstalling pandas-2.0.3:
      Successfully uninstalled pandas-2.0.3
  WARNING: Failed to remove contents in a temporary directory 'D:\ProgramData\envs\a308\Lib\site-packages\~andas'.
  You can safely remove it manually.
  Attempting uninstall: packaging
    Found existing installation: packaging 24.2
    Uninstalling packaging-24.2:
      Successfully uninstalled packaging-24.2
Successfully installed Flask-2.3.3 Mako-1.3.7 Werkzeug-3.0.6 alembic-1.14.0 async-timeout-5.0.1 bidict-0.23.1 blinker-1.8.2 blosc2-2.0.0 cffi-1.17.1 clarabel-0.9.0 click-8.1.7 cloudpickle-2.2.1 colorama-0.4.6 contourpy-1.1.1 cvxpy-1.4.4 cycler-0.12.1 databricks-cli-0.18.0 docker-6.1.3 docopt-ng-0.9.0 ecos-2.0.14 entrypoints-0.4 fire-0.7.0 fonttools-4.55.2 future-1.0.0 gitdb-4.0.11 gitpython-3.1.43 greenlet-3.1.1 gym_notices-0.0.8 h11-0.14.0 hyperopt-0.1.2 importlib-metadata-5.2.0 importlib-resources-6.4.5 itsdangerous-2.2.0 joblib-1.4.2 jsonpickle-4.0.0 kiwisolver-1.4.7 lightgbm-4.5.0 loguru-0.7.3 matplotlib-3.7.5 mlflow-1.30.0 msgpack-1.1.0 munch-4.0.0 numexpr-2.8.6 numpy-1.23.5 oauthlib-3.2.2 osqp-0.6.7.post3 packaging-21.3 pandas-1.5.3 patsy-1.0.1 pillow-10.4.0 plotly-5.24.1 prometheus-client-0.21.1 prometheus-flask-exporter-0.23.1 py-cpuinfo-9.0.0 pybind11-2.13.6 pycparser-2.22 pyjwt-2.9.0 pymongo-3.7.2 pyparsing-3.1.4 python-engineio-4.10.1 python-redis-lock-4.0.0 python-socketio-5.11.4 pytz-2022.7.1 pywin32-308 pyyaml-6.0.2 qdldl-0.1.7.post4 querystring-parser-1.2.4 redis-5.2.1 ruamel.yaml-0.17.36 ruamel.yaml.clib-0.2.8 sacred-0.8.7 schedule-1.2.2 scikit-learn-1.3.2 scipy-1.10.1 scs-3.2.4 simple-websocket-1.1.0 smmap-5.0.1 sqlalchemy-1.4.54 sqlparse-0.5.2 statsmodels-0.14.1 tables-3.8.0 tabulate-0.9.0 tenacity-9.0.0 termcolor-2.4.0 threadpoolctl-3.5.0 tornado-6.4.2 tqdm-4.67.1 waitress-2.1.2 websocket-client-1.8.0 win32-setctime-1.1.0 wrapt-1.17.0 wsproto-1.2.0 xlrd-2.0.1 zipp-3.20.2

最后记录下 安装后的环境

(a308) E:\hw2024\stock>pip list


Package                   Version
------------------------- -----------
alembic                   1.14.0
async-timeout             5.0.1
baostock                  0.8.9
bidict                    0.23.1
blinker                   1.8.2
blosc2                    2.0.0
certifi                   2024.8.30
cffi                      1.17.1
charset-normalizer        3.4.0
clarabel                  0.9.0
click                     8.1.7
cloudpickle               2.2.1
colorama                  0.4.6
contourpy                 1.1.1
cryptography              44.0.0
cvxpy                     1.4.4
cycler                    0.12.1
Cython                    3.0.11
databricks-cli            0.18.0
dill                      0.3.9
docker                    6.1.3
docopt-ng                 0.9.0
ecos                      2.0.14
entrypoints               0.4
filelock                  3.16.1
fire                      0.7.0
Flask                     2.3.3
fonttools                 4.55.2
fsspec                    2024.10.0
future                    1.0.0
gitdb                     4.0.11
GitPython                 3.1.43
greenlet                  3.1.1
gym                       0.26.2
gym-notices               0.0.8
h11                       0.14.0
hyperopt                  0.1.2
idna                      3.10
importlib-metadata        5.2.0
importlib_resources       6.4.5
itsdangerous              2.2.0
Jinja2                    3.1.4
joblib                    1.4.2
jsonpickle                4.0.0
kiwisolver                1.4.7
lightgbm                  4.5.0
loguru                    0.7.3
Mako                      1.3.7
MarkupSafe                2.1.5
matplotlib                3.7.5
mlflow                    1.30.0
mpmath                    1.3.0
msgpack                   1.1.0
munch                     4.0.0
networkx                  3.1
numexpr                   2.8.6
numpy                     1.23.5
oauthlib                  3.2.2
osqp                      0.6.7.post3
packaging                 21.3
pandas                    1.5.3
patsy                     1.0.1
pillow                    10.4.0
pip                       24.2
plotly                    5.24.1
prometheus_client         0.21.1
prometheus_flask_exporter 0.23.1
protobuf                  3.20.1
py-cpuinfo                9.0.0
pybind11                  2.13.6
pycparser                 2.22
PyJWT                     2.9.0
pymongo                   3.7.2
pyparsing                 3.1.4
pyqlib                    0.9.5.99
python-dateutil           2.9.0.post0
python-engineio           4.10.1
python-redis-lock         4.0.0
python-socketio           5.11.4
pytz                      2022.7.1
pywin32                   308
PyYAML                    6.0.2
qdldl                     0.1.7.post4
qlib                      0.0.2.dev20
querystring-parser        1.2.4
redis                     5.2.1
requests                  2.32.3
ruamel.yaml               0.17.36
ruamel.yaml.clib          0.2.8
sacred                    0.8.7
schedule                  1.2.2
scikit-learn              1.3.2
scipy                     1.10.1
scs                       3.2.4
setuptools                75.1.0
simple-websocket          1.1.0
six                       1.17.0
smmap                     5.0.1
SQLAlchemy                1.4.54
sqlparse                  0.5.2
statsmodels               0.14.1
sympy                     1.13.3
tables                    3.8.0
tabulate                  0.9.0
tenacity                  9.0.0
termcolor                 2.4.0
threadpoolctl             3.5.0
torch                     2.4.1
tornado                   6.4.2
tqdm                      4.67.1
typing_extensions         4.12.2
tzdata                    2024.2
urllib3                   2.2.3
waitress                  2.1.2
websocket-client          1.8.0
Werkzeug                  3.0.6
wheel                     0.44.0
win32-setctime            1.1.0
wrapt                     1.17.0
wsproto                   1.2.0
xlrd                      2.0.1
zipp                      3.20.2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/930742.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

web前端设计1

熟悉流行框架、熟练掌握CSS的写法&#xff0c;以及JAVASCRIPT库的应用&#xff0c;最主要的是能按要求改出相应的界面&#xff0c;因为我们基本没有自己手写代码的&#xff0c;所以得会拿别的界面改成想要的界面。 前端比较吃能力的就是CSS的写法&#xff0c;如何用已写好的框…

2020年国赛高教杯数学建模E题校园供水系统智能管理解题全过程文档及程序

2020年国赛高教杯数学建模 E题 校园供水系统智能管理 原题再现 校园供水系统是校园公用设施的重要组成部分&#xff0c;学校为了保障校园供水系统的正常运行需要投入大量的人力、物力和财力。随着科学技术的发展&#xff0c;校园内已经普遍使用了智能水表&#xff0c;从而可以…

JAVA |日常开发中连接Sqlite数据库详解

JAVA &#xff5c;日常开发中连接Sqlite数据库详解 前言一、SQLite 数据库概述1.1 定义与特点1.2 适用场景 二、Java 连接 SQLite 数据库的准备工作2.1 添加 SQLite JDBC 驱动依赖2.2 了解 JDBC 基础概念 三、建立数据库连接3.1 代码示例3.2 步骤解析 四、执行 SQL 语句4.1 创建…

图像超分辨率技术新进展:混合注意力聚合变换器HAAT

目录 1. 引言&#xff1a; 2. 混合注意力聚合变换器&#xff08;HAAT&#xff09;&#xff1a; 2.1 Swin-Dense-Residual-Connected Block&#xff08;SDRCB&#xff09;&#xff1a; 2.2 Hybrid Grid Attention Block&#xff08;HGAB&#xff09;&#xff1a; 3. 实验结…

【Appium】AttributeError: ‘NoneType‘ object has no attribute ‘to_capabilities‘

目录 1、报错内容 2、解决方案 &#xff08;1&#xff09;检查 &#xff08;2&#xff09;报错原因 &#xff08;3&#xff09;解决步骤 3、解决结果 1、报错内容 在PyCharm编写好脚本后&#xff0c;模拟器和appium也是连接成功的&#xff0c;但是运行脚本时报错&…

1.1 Beginner Level学习之“创建 ROS msg 和 srv”(第十节)

学习大纲&#xff1a; 1. msg 和 srv msg 文件是描述 ROS 消息字段的简单文本文件。它们用于为不同语言生成消息的源代码。srv 文件则描述了一个服务&#xff0c;包括两部分&#xff1a;请求和响应。Srv 文件用于生成服务的源代码。msg 文件存储在包的 msg 目录中。srv 文件存…

Android仿美团左右联动购物列表

Android仿美团左右联动购物列表 左右联动购物列表&#xff0c;不难。 一、思路&#xff1a; 两个RecycleView 二、效果图&#xff1a; 三、关键代码&#xff1a; public class MainActivity extends AppCompatActivity {private RecyclerView rl_left;private RecyclerVie…

微信小程序 运行出错 弹出提示框(获取token失败,请重试 或者 请求失败)

原因是&#xff1a;需要登陆微信公众平台在开发管理 中设置 相应的 服务器域名 中的 request合法域名 // index.jsPage({data: {products:[],cardLayout: grid, // 默认卡片布局为网格模式isGrid: true, // 默认为网格布局page: 0, // 当前页码size: 10, // 每页大小hasMore…

室联人形机器人:家政服务任务结构化、技术要点、深入应用FPGA的控制系统框架设计(整合版)

目录&#xff1a; 0 引言 1 人形机器人对室内家政服务任务的结构化 1.1人形机器人在室内家政服务中的比较优势 1.1.1 人形机器人拟人性的7个维度 1.1.2 拟人性在室内家政服务工作中的比较优势 1.1.3 潜在的重要用户&#xff1a;宠物爱好者 1.2 居所室内环境的特征与结构…

【YOLO部署Android安卓手机APP】YOLOv11部署到安卓实时目标检测识别——以火焰烟雾目标检测识别举例(可自定义更换其他目标)

前言:本项目基于YOLOv11部署到手机APP实现对火焰烟雾的检测识别,当然,以此你可以按照本项目开发步骤扩展更换为其他目标进行检测,例如更换为车牌、手势、人脸面部活动、人脸表情、火焰烟雾、行人、口罩、行为、水果、植物、农作物等等部署手机APP进行检测。本文为详细设计/…

python 执行celery

1、redis安装并启动redis安装与使用-CSDN博客 2、安装 celery 、eventlet 3. Task handler raised error: ValueError(not enough values to unpack (expected 3, got 0)) - Redskaber - 博客园 pip install celery pip install eventlet 3、python 版本3.10 #创建异步任…

未完成_RFdiffusion应用案例_从头设计pMHC的结合剂

目录 1. 论文导读1&#xff09;摘要2&#xff09;设计流程3&#xff09;设计流程的验证 2. 实战 1. 论文导读 Liu, Bingxu, et al. “Design of high specificity binders for peptide-MHC-I complexes.” bioRxiv (2024): 2024-11. 1&#xff09;摘要 MHC-I 将胞内抗原肽递呈…

【css】基础(一)

本专栏内容为&#xff1a;前端专栏 记录学习前端&#xff0c;分为若干个子专栏&#xff0c;html js css vue等 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;css专栏 &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&#x1f69a; &a…

【Python高级语法与正则表达式】

目录 1.正则表达式 1.1概述&#xff1a; 1.2re模块介绍 1.3re模块相关方法&#xff08;常用&#xff09;&#xff1a; 1.4案例 1.5正则表达式详解 1.5.1查什么 1.5.2查多少 1.5.3 从哪查 1.6重要概念 1.6.1子表达式 1.7 正则表达式的其他方法 1.7.1选择匹配符 1.7.2…

Vue03

目录 一、今日目标 1.生命周期 2.综合案例-小黑记账清单 3.工程化开发入门 4.综合案例-小兔仙首页 二、Vue生命周期 三、Vue生命周期钩子 四、生命周期钩子小案例 1.在created中发送数据 六、工程化开发模式和脚手架 1.开发Vue的两种方式 2.Vue CLI脚手架 基本介绍…

云轴科技ZStack出席中国电信国际EMCP平台香港发布会,持续推动海外合作

近日&#xff0c;以“云聚未来 翼起新篇”为主题的中国电信国际多云服务一站式平台&#xff08;E-surfing Managed Cloud Platform&#xff0c;简称EMCP平台&#xff09;新闻发布会在香港成功举办&#xff0c;标志着中国电信国际在云计算服务领域取得了又一重大进展。云轴科技…

Alibaba Druid(简称Druid)

目录 核心功能 数据源配置与管理&#xff1a; 高性能与可扩展性&#xff1a; 监控与SQL解析&#xff1a; 安全性&#xff1a; 应用场景 使用方式 配置示例 通过yaml方式配置 web.xml中配置 访问Druid的监控页面 监控页面展示 Alibaba Druid&#xff08;简称Druid&am…

JavaWeb学习--cookie和session

目录 &#xff08;一&#xff09;Cookie概述 1.什么叫Cookie 2.Cookie规范 3.Cookie的覆盖 4.cookie的最大存活时间 ​​​​​​&#xff08;Cookie的生命&#xff09; &#xff08;二&#xff09; Cookie的API 1.创建Cookie&#xff1a;new 构造方法 2.保存到客户端浏…

策略模式实战 - 猜拳游戏

**可以整体的替换一套算法&#xff0c;这就是策略模式。**这样对于同一个问题&#xff0c;可以有多种解决方案——算法实现的时候&#xff0c;可以通过策略模式来非常方便的进行算法的整体替换&#xff0c;而各种算法是独立封装好的&#xff0c;不用修改其内部逻辑。 具体的实…

Transformer简述和实现

Transformer 1、概述 (一)、诞生 自从2017年此文《Attention is All You Need》提出来Transformer后&#xff0c;便开启了大规模预训练的新时代&#xff0c;也在历史的长河中一举催生出了GPT、BERT这样的里程碑模型。 (二)、优势 相比之前占领市场的LSTM和GRU模型&#xf…