顶会新宠!KAN-LSTM完美融合新方案

2024深度学习发论文&模型涨点之——KAN+LSTM

KAN-LSTM混合预测模型是一种结合了自注意力机制(KAN, Key-attention network)和长短时记忆网络(LSTM)的深度学习模型,主要用于序列数据的预测任务,如时间序列分析、自然语言处理等。

KAN-LSTM混合模型的优势在于,KAN提供了全局视角,而LSTM则专注于捕捉局部序列中的有用信息,两者的结合能够提升模型对序列数据的理解和预测能力。通过将KAN的输出作为LSTM的输入,模型能够更有效地整合全局上下文信息和局部细节,从而提高预测的准确性和可靠性。

因为KAN是新提出的模型,这个方向现在也不是很卷,是个很好的发文方向。

我整理了一些KAN+LSTM【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。

论文精选

论文1:

Core Temperature Estimation of Lithium-Ion Batteries Using Long Short-Term Memory (LSTM) Network and Kolmogorov-Arnold Network (KAN)

利用长短期记忆(LSTM)网络和Kolmogorov-Arnold网络(KAN)估算锂离子电池的核心温度

方法

  • LSTM网络:提出了使用基本操作参数(如电压、电流和环境温度)来估算锂离子电池的表面和核心温度的LSTM网络架构。

  • KAN网络:介绍了一种基于数据驱动的深度学习方法KAN,用于估算锂离子电池的核心和表面温度,而不依赖于表面温度作为神经网络的反馈。

图片

创新点

  • KAN网络的引入:通过KAN网络,能够在不需要物理表面温度传感器的情况下,准确预测电池的内部和表面温度,降低了电池管理系统(BMS)的成本和线路复杂性。

  • 性能提升:实验验证显示KAN在估算核心温度时误差为0.5°C,计算成本为2.9ms至3.2ms,相较于传统方法在计算效率和准确性上都有显著提升。

  • 适应性和准确性:KAN模型不仅能够适应操作条件的变化,保持电池整个生命周期内的准确性,而且计算成本保持在可接受的范围内,适合于车载BMS和基于云的数字孪生BMS使用。

图片

论文2:

Deep state space recurrent neural networks for time series forecasting

深度状态空间递归神经网络用于时间序列预测

方法

  • 状态空间模型与RNN结合:提出了将计量经济学状态空间模型的原理与递归神经网络(RNN)的动态能力相结合的新型神经网络框架。

  • LSTM、GRU和TKAN:提出了使用长短期记忆(LSTM)、门控残差单元(GRU)和时间Kolmogorov-Arnold网络(TKAN)的状态空间模型。

图片

创新点

  • TKAN网络的提出:TKAN网络在Kolmogorov-Arnold网络(KAN)和LSTM的启发下展现出有希望的结果,特别是在时间序列预测方面。

  • 状态切换模型:通过引入隐藏的状态切换机制,模型能够根据某些可观察的协变量随时间变化的转换概率,增强了对市场不同状态(如牛市或熊市)的适应性和预测能力。

  • 性能提升:TKAN在模拟实验中展现出比LSTM和GRU更优越的性能,特别是在处理复杂非线性关系时,尽管计算复杂度和时间较高,但其预测能力和灵活性的提高是显著的

图片

论文3:

Model Comparisons: XNet Outperforms KAN

模型比较:XNet优于KAN

方法

  • XNet算法:探索了一种新型算法XNet,该算法采用复值柯西积分公式,提供了超越传统多层感知器(MLPs)和Kolmogorov-Arnold网络(KANs)的优越网络架构。

  • 柯西激活函数:XNet利用柯西核作为基函数,与KAN使用的B样条基函数形成对比。

图片

创新点

  • 函数逼近能力提升:XNet在处理Heaviside步函数和复杂高维场景时展现出比KAN更优越的性能,尤其在局部数据段的逼近上,XNet的均方误差(MSE)比KAN小1000倍。

  • 物理信息神经网络(PINN)中的优越性:在Poisson方程的基准测试中,XNet在物理信息神经网络(PINN)框架内的效率和准确性显著超过MLP和KAN。

  • 时间序列预测的创新:通过在LSTM架构中用XNet替换传统的前馈神经网络(FNN),引入了XLSTM模型,在时间序列预测实验中,XLSTM在准确性和可靠性方面一致超越了传统的LSTM模型。

图片

论文4:

TKAN: Temporal Kolmogorov-Arnold Networks

TKAN:时序Kolmogorov-Arnold网络

方法

  • 时序Kolmogorov-Arnold网络(TKAN):提出了一种新的神经网络架构,结合了Kolmogorov-Arnold网络(KAN)和长短期记忆网络(LSTM)。

  • 循环Kolmogorov-Arnold网络(RKAN)层:在TKAN中嵌入了记忆管理,以保持短期记忆。

  • 门控机制:通过门控机制管理信息流,决定哪些信息应该被保留或遗忘。

  • B-Spline曲线:使用B-Spline曲线作为1D函数的参数化表示,以学习KAN层中的激活函数。

图片

创新点

  • 结合KAN和LSTM:TKAN结合了KAN和LSTM的优点,提升了多步时间序列预测的准确性和效率,特别是在处理复杂序列模式方面。

  • RKAN层:通过在每个层中嵌入记忆管理,RKAN层能够存储与时间上下文相关的信息,并在处理过程中被网络访问,使网络能够显式学习和利用过去的信息。

  • 性能提升:在多步预测任务中,TKAN相比于传统的LSTM和GRU模型表现出更好的性能,例如在15步预测中,TKAN的R-squared值比GRU高出至少25%,显示出在长期预测中的优势。

  • 模型稳定性:TKAN在多次实验中显示出更好的稳定性,与GRU和LSTM相比,TKAN的性能变化较小,表明其在不同实验间的权重校准更为稳定。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/930072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ介绍及安装

文章目录 一. MQ二. RabbitMQ三. RabbitMQ作用四. MQ产品对比五. 安装RabbitMQ1. 安装erlang2. 安装rabbitMQ3. 安装RabbitMQ管理界⾯4. 启动服务5. 访问界面6. 添加管理员用户7. 重新登录 一. MQ MQ( Message queue ), 从字⾯意思上看, 本质是个队列, FIFO 先⼊先出&#xff…

小程序 - 美食列表

小程序交互练习 - 美食列表小程序开发笔记 目录 美食列表 功能描述 准备工作 创建项目 配置页面 配置导航栏 启动本地服务器 页面初始数据 设置获取美食数据 设置onload函数 设置项目配置 页面渲染 页面样式 处理电话格式 创建处理电话格式脚本 页面引入脚本 …

筑起厂区安全--叉车安全防护装置全解析

在繁忙的工业生产领域中,叉车作为搬运工,穿梭于仓储与生产线之间。然而,叉车的高效运作背后,也隐藏着诸多安全风险,尤其是在那些空间狭小、物流繁忙的环境中。为了降低这些潜在的危险,叉车安全防护装置便成…

java基础概念47-ArrayList、LinkList和迭代器

一、ArrayList集合 1-1、ArrayList的两种添加信息的方式 1-2、ArrayList集合底层逻辑 1、利用空参创建的集合,在底层创建一个默认长度为0的数组 2、添加第一个元素时,底层会创建一个新的长度为10的数组 3、存满时,会扩容1.5倍。 4、如果…

亚马逊云科技大语言模型加速OCR应用场景发展

目录 前言Amazon Bedrock关于OCR解决方案Amazon Bedrock进行OCR关键信息提取方案注册亚马逊账号API调用环境搭建 总结 前言 大语言模型是一种基于神经网络的自然语言处理技术,它能够学习和预测自然语言文本中的规律和模式,可以理解和生成自然语言的人工…

Day7 苍穹外卖项目 缓存菜品、SpringCache框架、缓存套餐、添加购物车、查看购物车、清空购物车

目录 1.缓存菜品 1.1 问题说明 1.2 实现思路 1.3 代码开发 1.3.1 加入缓存 1.3.2 清除缓存 1.3.2.1 新增菜品优化 1.3.2.2 菜品批量删除优化 1.3.2.3 修改菜品优化 1.3.2.4 菜品起售停售优化 1.4 功能测试 1.4.1 加入缓存 1.4.2 菜品修改 1.5 代码提交 2.缓存套餐 2.1 Spring C…

OpenGL环境配置

首先我们需要一个OpenGL上下文(context)和一个用于显示的窗口。这些操作在每个系统上都是不一样的,我们需要自己处理创建窗口,定义OpenGL上下文以及处理用户输入。 我们可以选择使用库来节省我们书写操作系统相关代码的时间&…

Sarcomere仿人灵巧手ARTUS,20个自由度拓宽机器人作业边界

Sarcomere Dynamics 是一家深度技术先驱,通过开发和商业化仿人机械来改变机器人行业。专注于为科研人员,系统集成商和制造商提供更实惠、更轻便且更灵活的末端执行器替代品。凭借创新的致动器技术,创造了一款紧凑、轻便且非常坚固的机械手Art…

qt QNetworkAccessManager详解

1、概述 QNetworkAccessManager是QtNetwork模块中的一个核心类,它允许应用程序发送网络请求并接收响应。该类是网络通信的基石,提供了一种方便的方式来处理常见的网络协议,如HTTP、HTTPS等。QNetworkAccessManager对象持有其发送的请求的通用…

聊点技术 | AI赋能:根因定位如何深入到SQL级别

作者信息 背 景 在当今数字化时代,企业对IT系统的依赖日益加深,系统故障的影响也愈发严重。因此,快速准确地定位故障根因成为了IT运维领域的重要课题。传统的故障排查方法往往只能触及表面,无法深入到最核心的SQL级别&#xff0c…

scss文件内引入其他scss文件报错

1、今天在编译一些老项目的时候,老是提示下面信息 2、而且有很多Sass import rules are deprecated and will be removed in Dart Sass 3.0.0.警告 3、用npm view sass versions看,其中sass的最新版本是1.82.0 4、经过测试"sass": "1.75…

楼房销售系统设计与实现

文末获取源码和万字论文,制作不易,感谢点赞支持。 毕 业 设 计(论 文) 题目:楼房销售系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储&#xf…

EasyMedia播放rtsprtmp视频流(flvhls)

学习链接 MisterZhang/EasyMedia - gitee地址 EasyMedia转码rtsp视频流flv格式,hls格式,H5页面播放flv流视频 EasyMedia播放rtsp视频流(vue2、vue3皆可用) EasyMedia转码rtsp视频流flv格式,hls格式,H5页…

一文了解模式识别顶会ICPR 2024的研究热点与最新趋势

简介 对模式识别研究领域前沿方向的跟踪是提高科研能力和制定科研战略的关键。本文通过图文并茂的方式介绍了ICPR 2024的研究热点与最新趋势,帮助读者了解和跟踪模式识别的前沿研究方向。本推文的作者是黄星宇,审校为邱雪和许东舟。 一、会议介绍 ICPR…

完美解决Qt Qml窗口全屏软键盘遮挡不显示

1、前提 说明:我使用的是第三方软键盘 QVirtualKeyboard QVirtualKeyboard: Qt5虚拟键盘支持中英文,仿qt官方的virtualkeyboard模块,但使用QWidget实现。 - Gitee.com 由于参考了几篇文章尝试但没有效果,链接如下: 文章一:可能…

Bootstrap-HTML(三)Bootstrap5列表组全解析

Bootstrap-HTML(三)Bootstrap5列表组全解析 前言(一)HTML 列表基础回顾1.无序列表2.有序列表3.定义列表 二、无样式的有序列表和无序列表内联列表 三、Bootstrap5 列表组1.基础的列表组2.设置禁用和活动项3.链接项的列表组4.移除列…

rockit 学习、开发笔记(六)(VENC)

前言 上节我们讲到了VDEC解码模块,那当然少不了VENC编码模块了,一般有编解码的需求都是为了压缩视频的大小,方便减少传输所占用的带宽。 概述 VENC 模块,即视频编码模块。本模块支持多路实时编码,且每路编码独立&am…

使用Dapper创建一个简单的查询

1.先在NuGet上下载Dapper包 2.创建对应的model 代码如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace 数据显示 {public class User{public int UserId { get; set; }public…

wireshark网络安全流量分析基础

网络安全流量分析领域中,wireshark和csnas是取证、安全分析的好工具,包括很多研究安全规则、APT及木马流量特征的小伙伴,也会常用到两个工具。这两款流量嗅探、分析软件,今天先介绍wireshark作为安全分析工具的基本使用。 2|002.…

深度学习笔记25_LSTM实现糖尿病探索与预测

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 一、我的环境 1.语言环境:Python 3.9 2.编译器:Pycharm 3.深度学习环境:TensorFlow 2.10.0 二、GPU设置…