【动手学深度学习】--21.锚框

锚框

学习视频:锚框【动手学深度学习v2】

官方笔记:锚框

1.锚框

image-20230722093143509

目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边界从而更准确地预测目标的真实边界框(ground-truth bounding box)。 不同的模型使用的区域采样方法可能不同。 这里我们介绍其中的一种方法:以每个像素为中心,生成多个缩放比和宽高比(aspect ratio)不同的边界框。 这些边界框被称为锚框(anchor box)

首先,让我们修改输出精度,以获得更简洁的输出

%matplotlib inline
import torch
from d2l import torch as d2l

torch.set_printoptions(2)  # 精简输出精度

1.1生成多个锚框

image-20230722095819137

#@save
def multibox_prior(data, sizes, ratios):
    """生成以每个像素为中心具有不同形状的锚框"""
    in_height, in_width = data.shape[-2:]
    device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
    boxes_per_pixel = (num_sizes + num_ratios - 1)
    size_tensor = torch.tensor(sizes, device=device)
    ratio_tensor = torch.tensor(ratios, device=device)

    # 为了将锚点移动到像素的中心,需要设置偏移量。
    # 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
    offset_h, offset_w = 0.5, 0.5
    steps_h = 1.0 / in_height  # 在y轴上缩放步长
    steps_w = 1.0 / in_width  # 在x轴上缩放步长

    # 生成锚框的所有中心点
    center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
    center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
    shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
    shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)

    # 生成“boxes_per_pixel”个高和宽,
    # 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)
    w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
                   sizes[0] * torch.sqrt(ratio_tensor[1:])))\
                   * in_height / in_width  # 处理矩形输入
    h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
                   sizes[0] / torch.sqrt(ratio_tensor[1:])))
    # 除以2来获得半高和半宽
    anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
                                        in_height * in_width, 1) / 2

    # 每个中心点都将有“boxes_per_pixel”个锚框,
    # 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次
    out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
                dim=1).repeat_interleave(boxes_per_pixel, dim=0)
    output = out_grid + anchor_manipulations
    return output.unsqueeze(0)

可以看到返回的锚框变量Y的形状是(批量大小,锚框的数量,4)。

img = d2l.plt.imread('../img/catdog.jpg')
h, w = img.shape[:2]

print(h, w)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape

'''
561 728

torch.Size([1, 2042040, 4])
'''

将锚框变量Y的形状更改为(图像高度,图像宽度,以同一像素为中心的锚框的数量,4)后,我们可以获得以指定像素的位置为中心的所有锚框。 在接下来的内容中,我们访问以(250,250)为中心的第一个锚框。 它有四个元素:锚框左上角的(x,y)轴坐标和右下角的(x,y)轴坐标。 输出中两个轴的坐标各分别除以了图像的宽度和高度

boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]

'''
tensor([0.06, 0.07, 0.63, 0.82])
'''

为了显示以图像中以某个像素为中心的所有锚框,定义下面的show_bboxes函数来在图像上绘制多个边界框。

#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):
    """显示所有边界框"""
    def _make_list(obj, default_values=None):
        if obj is None:
            obj = default_values
        elif not isinstance(obj, (list, tuple)):
            obj = [obj]
        return obj

    labels = _make_list(labels)
    colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
        axes.add_patch(rect)
        if labels and len(labels) > i:
            text_color = 'k' if color == 'w' else 'w'
            axes.text(rect.xy[0], rect.xy[1], labels[i],
                      va='center', ha='center', fontsize=9, color=text_color,
                      bbox=dict(facecolor=color, lw=0))

正如从上面代码中所看到的,变量boxes中x轴和y轴的坐标值已分别除以图像的宽度和高度。 绘制锚框时,我们需要恢复它们原始的坐标值。 因此,在下面定义了变量bbox_scale。 现在可以绘制出图像中所有以(250,250)为中心的锚框了。 如下所示,缩放比为0.75且宽高比为1的蓝色锚框很好地围绕着图像中的狗。

d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
            ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
             's=0.75, r=0.5'])

image-20230722100046025

2.交并比

image-20230824164907691

接下来部分将使用交并比来衡量锚框和真实边界框之间、以及不同锚框之间的相似度。 给定两个锚框或边界框的列表,以下box_iou函数将在这两个列表中计算它们成对的交并比。

#@save
def box_iou(boxes1, boxes2):
    """计算两个锚框或边界框列表中成对的交并比"""
    box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
                              (boxes[:, 3] - boxes[:, 1]))
    # boxes1,boxes2,areas1,areas2的形状:
    # boxes1:(boxes1的数量,4),
    # boxes2:(boxes2的数量,4),
    # areas1:(boxes1的数量,),
    # areas2:(boxes2的数量,)
    areas1 = box_area(boxes1)
    areas2 = box_area(boxes2)
    # inter_upperlefts,inter_lowerrights,inters的形状:
    # (boxes1的数量,boxes2的数量,2)
    inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
    inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
    inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
    # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
    inter_areas = inters[:, :, 0] * inters[:, :, 1]
    union_areas = areas1[:, None] + areas2 - inter_areas
    return inter_areas / union_areas

3.在训练数据中标注锚框

在训练集中,我们将每个锚框视为一个训练样本。 为了训练目标检测模型,我们需要每个锚框的类别(class)和偏移量(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。 在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。

目标检测训练集带有真实边界框的位置及其包围物体类别的标签。 要标记任何生成的锚框,我们可以参考分配到的最接近此锚框的真实边界框的位置和类别标签

3.1 将真实边界框分配给锚框

image-20230824165147900

image-20230824165211860

具体算法为:

#@save
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
    """将最接近的真实边界框分配给锚框"""
    num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
    # 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
    jaccard = box_iou(anchors, ground_truth)
    # 对于每个锚框,分配的真实边界框的张量
    anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
                                  device=device)
    # 根据阈值,决定是否分配真实边界框
    max_ious, indices = torch.max(jaccard, dim=1)
    anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
    box_j = indices[max_ious >= iou_threshold]
    anchors_bbox_map[anc_i] = box_j
    col_discard = torch.full((num_anchors,), -1)
    row_discard = torch.full((num_gt_boxes,), -1)
    for _ in range(num_gt_boxes):
        max_idx = torch.argmax(jaccard)
        box_idx = (max_idx % num_gt_boxes).long()
        anc_idx = (max_idx / num_gt_boxes).long()
        anchors_bbox_map[anc_idx] = box_idx
        jaccard[:, box_idx] = col_discard
        jaccard[anc_idx, :] = row_discard
    return anchors_bbox_map

3.2标记类别和偏移量

image-20230824165429907

#@save
def offset_boxes(anchors, assigned_bb, eps=1e-6):
    """对锚框偏移量的转换"""
    c_anc = d2l.box_corner_to_center(anchors)
    c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
    offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
    offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
    offset = torch.cat([offset_xy, offset_wh], axis=1)
    return offset

image-20230824165448159

#@save
def multibox_target(anchors, labels):
    """使用真实边界框标记锚框"""
    batch_size, anchors = labels.shape[0], anchors.squeeze(0)
    batch_offset, batch_mask, batch_class_labels = [], [], []
    device, num_anchors = anchors.device, anchors.shape[0]
    for i in range(batch_size):
        label = labels[i, :, :]
        anchors_bbox_map = assign_anchor_to_bbox(
            label[:, 1:], anchors, device)
        bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
            1, 4)
        # 将类标签和分配的边界框坐标初始化为零
        class_labels = torch.zeros(num_anchors, dtype=torch.long,
                                   device=device)
        assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
                                  device=device)
        # 使用真实边界框来标记锚框的类别。
        # 如果一个锚框没有被分配,标记其为背景(值为零)
        indices_true = torch.nonzero(anchors_bbox_map >= 0)
        bb_idx = anchors_bbox_map[indices_true]
        class_labels[indices_true] = label[bb_idx, 0].long() + 1
        assigned_bb[indices_true] = label[bb_idx, 1:]
        # 偏移量转换
        offset = offset_boxes(anchors, assigned_bb) * bbox_mask
        batch_offset.append(offset.reshape(-1))
        batch_mask.append(bbox_mask.reshape(-1))
        batch_class_labels.append(class_labels)
    bbox_offset = torch.stack(batch_offset)
    bbox_mask = torch.stack(batch_mask)
    class_labels = torch.stack(batch_class_labels)
    return (bbox_offset, bbox_mask, class_labels)

3.3举例

下面通过一个具体的例子来说明锚框标签。 我们已经为加载图像中的狗和猫定义了真实边界框,其中第一个元素是类别(0代表狗,1代表猫),其余四个元素是左上角和右下角的(x,y)轴坐标(范围介于0和1之间)。我们还构建了五个锚框,用左上角和右下角的坐标进行标记:A0,…A4(索引从0开始),然后我们在图像中绘制这些真实边界框和锚框

ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
                         [1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
                    [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
                    [0.57, 0.3, 0.92, 0.9]])

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

image-20230824165704534

使用上面定义的multibox_target函数,我们可以根据狗和猫的真实边界框,标注这些锚框的分类和偏移量。 在这个例子中,背景、狗和猫的类索引分别为0、1和2。 下面我们为锚框和真实边界框样本添加一个维度

labels = multibox_target(anchors.unsqueeze(dim=0),
                         ground_truth.unsqueeze(dim=0))

返回的结果中有三个元素,都是张量格式。第三个元素包含标记的输入锚框的类别。

image-20230824165743237

labels[2]

'''
tensor([[0, 1, 2, 0, 2]])
'''

返回的第二个元素是掩码(mask)变量,形状为(批量大小,锚框数的四倍)。 掩码变量中的元素与每个锚框的4个偏移量一一对应。 由于我们不关心对背景的检测,负类的偏移量不应影响目标函数。 通过元素乘法,掩码变量中的零将在计算目标函数之前过滤掉负类偏移量。

labels[1]

'''
tensor([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1.,
         1., 1.]])
'''

返回的第一个元素包含了为每个锚框标记的四个偏移值。 请注意,负类锚框的偏移量被标记为零

labels[0]
'''
tensor([[-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00,  1.40e+00,  1.00e+01,
          2.59e+00,  7.18e+00, -1.20e+00,  2.69e-01,  1.68e+00, -1.57e+00,
         -0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, -5.71e-01, -1.00e+00,
          4.17e-06,  6.26e-01]])
'''

4.使用非极大值抑制预测边界框

在预测时,我们先为图像生成多个锚框,再为这些锚框一一预测类别和偏移量。 一个预测好的边界框则根据其中某个带有预测偏移量的锚框而生成。 下面我们实现了offset_inverse函数,该函数将锚框和偏移量预测作为输入,并应用逆偏移变换来返回预测的边界框坐标。

#@save
def offset_inverse(anchors, offset_preds):
    """根据带有预测偏移量的锚框来预测边界框"""
    anc = d2l.box_corner_to_center(anchors)
    pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]
    pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]
    pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)
    predicted_bbox = d2l.box_center_to_corner(pred_bbox)
    return predicted_bbox

image-20230824165922703

以下nms函数按降序对置信度进行排序并返回其索引。

#@save
def nms(boxes, scores, iou_threshold):
    """对预测边界框的置信度进行排序"""
    B = torch.argsort(scores, dim=-1, descending=True)
    keep = []  # 保留预测边界框的指标
    while B.numel() > 0:
        i = B[0]
        keep.append(i)
        if B.numel() == 1: break
        iou = box_iou(boxes[i, :].reshape(-1, 4),
                      boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
        inds = torch.nonzero(iou <= iou_threshold).reshape(-1)
        B = B[inds + 1]
    return torch.tensor(keep, device=boxes.device)

我们定义以下multibox_detection函数来将非极大值抑制应用于预测边界框。 这里的实现有点复杂,请不要担心。我们将在实现之后,马上用一个具体的例子来展示它是如何工作的。

#@save
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,
                       pos_threshold=0.009999999):
    """使用非极大值抑制来预测边界框"""
    device, batch_size = cls_probs.device, cls_probs.shape[0]
    anchors = anchors.squeeze(0)
    num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]
    out = []
    for i in range(batch_size):
        cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)
        conf, class_id = torch.max(cls_prob[1:], 0)
        predicted_bb = offset_inverse(anchors, offset_pred)
        keep = nms(predicted_bb, conf, nms_threshold)

        # 找到所有的non_keep索引,并将类设置为背景
        all_idx = torch.arange(num_anchors, dtype=torch.long, device=device)
        combined = torch.cat((keep, all_idx))
        uniques, counts = combined.unique(return_counts=True)
        non_keep = uniques[counts == 1]
        all_id_sorted = torch.cat((keep, non_keep))
        class_id[non_keep] = -1
        class_id = class_id[all_id_sorted]
        conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]
        # pos_threshold是一个用于非背景预测的阈值
        below_min_idx = (conf < pos_threshold)
        class_id[below_min_idx] = -1
        conf[below_min_idx] = 1 - conf[below_min_idx]
        pred_info = torch.cat((class_id.unsqueeze(1),
                               conf.unsqueeze(1),
                               predicted_bb), dim=1)
        out.append(pred_info)
    return torch.stack(out)

现在让我们将上述算法应用到一个带有四个锚框的具体示例中。 为简单起见,我们假设预测的偏移量都是零,这意味着预测的边界框即是锚框。 对于背景、狗和猫其中的每个类,我们还定义了它的预测概率。

anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
                      [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0] * anchors.numel())
cls_probs = torch.tensor([[0] * 4,  # 背景的预测概率
                      [0.9, 0.8, 0.7, 0.1],  # 狗的预测概率
                      [0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率

我们可以在图像上绘制这些预测边界框和置信度。

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,
            ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

image-20230824170019165

现在我们可以调用multibox_detection函数来执行非极大值抑制,其中阈值设置为0.5。 请注意,我们在示例的张量输入中添加了维度。

我们可以看到返回结果的形状是(批量大小,锚框的数量,6)。 最内层维度中的六个元素提供了同一预测边界框的输出信息。 第一个元素是预测的类索引,从0开始(0代表狗,1代表猫),值-1表示背景或在非极大值抑制中被移除了。 第二个元素是预测的边界框的置信度。 其余四个元素分别是预测边界框左上角和右下角的(x,y)轴坐标(范围介于0和1之间)

output = multibox_detection(cls_probs.unsqueeze(dim=0),
                            offset_preds.unsqueeze(dim=0),
                            anchors.unsqueeze(dim=0),
                            nms_threshold=0.5)
output

'''
tensor([[[ 0.00,  0.90,  0.10,  0.08,  0.52,  0.92],
         [ 1.00,  0.90,  0.55,  0.20,  0.90,  0.88],
         [-1.00,  0.80,  0.08,  0.20,  0.56,  0.95],
         [-1.00,  0.70,  0.15,  0.30,  0.62,  0.91]]])
'''

删除-1类别(背景)的预测边界框后,我们可以输出由非极大值抑制保存的最终预测边界框。

fig = d2l.plt.imshow(img)
for i in output[0].detach().numpy():
    if i[0] == -1:
        continue
    label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
    show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

image-20230824170122408

实践中,在执行非极大值抑制前,我们甚至可以将置信度较低的预测边界框移除,从而减少此算法中的计算量。 我们也可以对非极大值抑制的输出结果进行后处理。例如,只保留置信度更高的结果作为最终输出。

总结:

  • 一类目标检测算法基于锚框来预测
  • 首先生成大量锚框,并赋予标号,每个锚框作为一个样本进行训练
  • 在预测时,使用NMS来去掉冗余的预测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/92942.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

6个最受欢迎的3D点云查看工具【在线/离线】

推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 免费3D点云软件有点像寻找大脚怪… 性质神秘。 模糊的目击。 有些人甚至认为这是民间传说。 但令人惊讶的是&#xff0c;免费的3D点云软件确实存在。 与大脚野人不同的是&#xff0c;我们已经证明了它的存在。 本文将介…

spark中排查Premature EOF: no length prefix available

报错信息 /07/22 10:20:28 WARN DFSClient: Error Recovery for block BP-888461729-172.16.34.148-1397820377004:blk_15089246483_16183344527 in pipeline 172.16.34.64:50010, 172.16.34.223:50010: bad datanode 172.16.34.64:50010 [DataStreamer for file /bdp/data/u9…

YOLOv5、v8改进:CrissCrossAttention注意力机制

目录 1.简介 2. yolov5添加方法&#xff1a; 2.1common.py构建CrissCrossAttention模块 2.2yolo.py中注册 CrissCrossAttention模块 2.3修改yaml文件。 1.简介 这是ICCV2019的用于语义分割的论文&#xff0c;可以说和CVPR2019的DANet遥相呼应。 和DANet一样&#xff0c;…

maven下载不了仓库地址为https的依赖jar,配置参数忽略ssl安全检查

问题原因 私服使用的https地址&#xff0c;然后安全证书过期的或没有&#xff0c;使用maven命令时&#xff0c;可以添加以下参数&#xff0c;忽略安全检查 mvn -Dmaven.wagon.http.ssl.insecuretrue -Dmaven.wagon.http.ssl.allowalltrue -Dmaven.wagon.http.ssl.ignore.vali…

《机器学习核心技术》分类算法 - 决策树

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 决策树 1、决策树API2、决策时实际应用2.1、获取数据集2.2、划分数据集2.3、决策…

【算法专题突破】双指针 - 快乐数(3)

目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后&#xff1a; 1. 题目解析 题目链接&#xff1a;202. 快乐数 - 力扣&#xff08;Leetcode&#xff09; 这道题的题目也很容易理解&#xff0c; 看一下题目给的示例就能很容易明白&#xff0c; 但是要注意一个点&#…

redux中间件理解,常见的中间件,实现原理。

文章目录 一、Redux中间件介绍1、什么是Redux中间件2、使用redux中间件 一、Redux中间件介绍 1、什么是Redux中间件 redux 提供了类似后端 Express 的中间件概念&#xff0c;本质的目的是提供第三方插件的模式&#xff0c;自定义拦截 action -> reducer 的过程。变为 actio…

Ceph入门到精通-大流量10GB/s LVS+OSPF 高性能架构

LVS 和 LVSkeepalived 这两种架构在平时听得多了&#xff0c;最近才接触到另外一个架构LVSOSPF。这个架构实际上是LVSKeepalived 的升级版本&#xff0c;我们所知道LVSKeepalived 架构是这样子的&#xff1a; 随着业务的扩展&#xff0c;我们可以对web服务器做水平扩展&#xf…

4G WiFi LoRa无线外夹式超声波管道流量计MQTT/http协议 json数据说明

ip&#xff1a;114.128.112.131 port&#xff1a;1883 uname&#xff1a;scwl_flowmeter pwd&#xff1a;b123 topic&#xff1a;iot/data/scwlflowmeter { “deviceId”:“设备序列号”, “flow”:“瞬时流量&#xff08;浮点数&#xff09;”, “heatFlow”:“瞬时热流量&am…

Vue脚手架中安装ElementUi

目录 ElementUi简介&#xff1a; ElementUi下载&#xff1a; npm 安装&#xff1a; 引入ElementUi: 测试是否引入成功&#xff1a; Element-ui官网&#xff1a;组件 | Element ElementUi简介&#xff1a; ElementUi&#xff0c;是由国内的饿了么团队开发并开源的一套为开…

DML语句的用法(MySQL)

文章目录 前言一、DML介绍二、DML语句操作1、给指定字段添加数据2、给全部字段添加数据3、批量添加数据4、修改数据5、删除数据 总结 前言 本文主要介绍SQL语句中DML语句的用法。 在实验开始之前我们先创建一下所要使用表&#xff0c;如下图所示&#xff1a; 一、DML介绍 DM…

PowerDesigner学习笔记

备注&#xff1a;文章主要对概念数据模型进行深入分析 1.对各种模型图初步认识 1.1.概念数据模型 (CDM) (Conceptual Data Model) 对数据和信息进行建模&#xff0c;利用实体-关系图&#xff08;E-R图&#xff09;的形式组织数据&#xff0c;检验数据设计的有效性和合理性。 …

Linux驱动之设备树下的platform驱动

目录 一、设备树下的 platform 驱动简介 二、修改设备树文件 2.1 添加 LED 设备节点 2.2 添加 pinctrl 节点 2.3 检查 PIN 是否被其他外设使用 三、platform 驱动程序编写 四、测试 APP 编写 五、运行测试 5.1 编译 5.2 运行测试 前面一篇我们讲解了传统的、未采用设备…

用香港服务器域名需要备案吗?

​  在选择服务器的时候&#xff0c;很多人会考虑使用香港服务器。香港服务器的一个优势就是不需要备案。不管是虚拟主机还是云主机&#xff0c;无论是个人网站还是商业网站&#xff0c;都不需要进行备案手续。 域名实名认证 虽然不需要备案&#xff0c;但使用香港服务器搭建…

webrtc的Sdp中的Plan-b和UnifiedPlan

在一些类似于视频会议场景下&#xff0c;媒体会话参与者需要接收或者发送多个流&#xff0c;例如一个源端&#xff0c;同时发送多个左右音轨的音频&#xff0c;或者多个摄像头的视频流&#xff1b;在2013年&#xff0c;提出了2个不同的SDP IETF草案Plan B和Unified Plan&#x…

数据库表结构导出为word、html、markdown【转载,已解决,已验证,开源】

注&#xff1a;本文为gitcode代码验证&#xff0c;转载gitcode gitcode&#xff1a;https://gitcode.net/mirrors/pingfangushi/screw?utm_sourcecsdn_github_accelerator 整理数据库文档&#xff1a;https://mp.weixin.qq.com/s/Bo_U5_cl82hfQ6GmRs2vtA <!--数据库文档核…

【Day-21慢就是快】代码随想录-栈与队列-逆波兰表达式求值

逆波兰表达式&#xff1a;是一种后缀表达式&#xff0c;所谓后缀就是指运算符写在后面。 平常使用的算式则是一种中缀表达式&#xff0c;如 ( 1 2 ) * ( 3 4 ) 。 该算式的逆波兰表达式写法为 ( ( 1 2 ) ( 3 4 ) * ) 。 逆波兰表达式主要有以下两个优点&#xff1a; 去掉…

Spring AOP基于注解方式实现和细节

目录 一、Spring AOP底层技术 二、初步实现AOP编程 三、获取切点详细信息 四、 切点表达式语法 五、重用&#xff08;提取&#xff09;切点表达式 一、Spring AOP底层技术 SpringAop的核心在于动态代理&#xff0c;那么在SpringAop的底层的技术是依靠了什么技术呢&#x…

数据结构--队列与循环队列

队列 队列是什么&#xff0c;先联想一下队&#xff0c;排队先来的人排前面先出&#xff0c;后来的人排后面后出&#xff1b;队列的性质也一样&#xff0c;先进队列的数据先出&#xff0c;后进队列的后出&#xff1b;就像图一的样子&#xff1a; 图1 如图1&#xff0c;1号元素是…

【Rust】Rust学习 第十八章模式用来匹配值的结构

模式是 Rust 中特殊的语法&#xff0c;它用来匹配类型中的结构&#xff0c;无论类型是简单还是复杂。结合使用模式和 match 表达式以及其他结构可以提供更多对程序控制流的支配权。模式由如下一些内容组合而成&#xff1a; 字面值解构的数组、枚举、结构体或者元组变量通配符占…