顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)

顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)

目录

    • 顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现OOA-BiTCN-BiGRU-Attention鱼鹰算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:大学生课程设计、期末大作业和毕业设计。模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/928307.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Agile VMO分享:海尔案例

海尔集团是全球最大的家电制造商之一,拥有超过76 000名员工。它获得了2018-2019年全球智能家电品牌前10名和2018-2019年全球消费电子品牌前50名的荣誉。 海尔利用价值流结构将自己组织成一些可以自管理的微型企业。这些微型企业拥有决策,设计和交付新产品…

第七课 Unity编辑器创建的资源优化_UI篇(UGUI)

上期我们学习了简单的Scene优化,接下来我们继续编辑器创建资源的UGUI优化 UI篇(UGUI) 优化UGUI应从哪些方面入手? 可以从CPU和GPU两方面考虑,CPU方面,避免触发或减少Canvas的Rebuild和Rebatch&#xff0c…

LabVIEW MathScript工具包对运行速度的影响及优化方法

LabVIEW 的 MathScript 工具包 在运行时可能会影响程序的运行速度,主要是由于以下几个原因: 1. 解释型语言执行方式 MathScript 使用的是类似于 MATLAB 的解释型语言,这意味着它不像编译型语言(如 C、C 或 LabVIEW 本身的 VI&…

中国移动量子云平台:算力并网590量子比特!

在技术革新的浪潮中,量子计算以其独特的并行处理能力和指数级增长的计算潜力,有望成为未来技术范式变革和颠覆式创新应用的新源泉。中国移动作为通信行业的领军企业,致力于量子计算技术研究,推动量子计算产业的跨越式发展。 量子云…

pytest(二)excel数据驱动

一、excel数据驱动 excel文件内容 excel数据驱动使用方法 import openpyxl import pytestdef get_excel():excel_obj openpyxl.load_workbook("../pytest结合数据驱动-excel/data.xlsx")sheet_obj excel_obj["Sheet1"]values sheet_obj.valuescase_li…

文库 | 从嬴图的技术文档聊起

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结…

flask的第一个应用

本文编写一个简单的实例来记录下flask的使用 文章目录 简单实例flask中的路由无参形式有参形式 参数类型本文小结 简单实例 flask的依赖包都安装好之后,我们就可以写一个最简单的web应用程序了,我们把这个应用程序命名为first.py: from flask import Fla…

【UE5 C++】判断两点连线是否穿过球体

目录 前言 方法一 原理 代码 测试 结果 方法二 原理 一、检查连线与球体的相交情况 二、检查距离与球体半径的关系 三、检查连线与球体的相交 代码 前言 通过数学原理判断空间中任意两点的连线是否穿过球体,再通过射线检测检验算法的正确性。 方法一 …

Python办公——openpyxl处理Excel每个sheet每行 修改为软雅黑9号剧中+边框线

目录 专栏导读背景1、库的介绍①:openpyxl 2、库的安装3、核心代码4、完整代码5、最快的方法(50万行44秒)——表头其余单元格都修改样式总结 专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍…

Figma入门-约束与对齐

Figma入门-约束与对齐 前言 在之前的工作中,大家的原型图都是使用 Axure 制作的,印象中 Figma 一直是个专业设计软件。 最近,很多产品朋友告诉我,很多原型图都开始用Figma制作了,并且很多组件都是内置的&#xff0c…

8. Debian系统中显示屏免密码自动登录

本文介绍如何在Debian系统上,启动后,自动免密登录,不卡在登录界面。 1. 修改lightDM配置文件 嵌入式Debian系统采用lightDM显示管理器,所以,一般需要修改它的配置文件/etc/lightdm/lightdm.conf,找到[Seat…

Unity类银河战士恶魔城学习总结(P156 Audio Settings音频设置)

【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址:https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了音频的大小设置与保存加载 音频管理器 UI_VolumeSlider.cs 定义了 UI_VolumeSlider 类,用于处理与音频设置相关的…

控制访问权限

Swift中的控制访问权限有5种,分别是private,fileprivate,public,open,intelnal。 如果我们没有写访问权限关键字时,默认的访问权限是intelnal 访问控制权限从高到低的顺序是:open > public…

单例模式的析构学习

1、例子 如果单例对象是类的static成员&#xff0c;那么在程序结束时不会调用类的析构函数&#xff0c;如下&#xff1a; #include <iostream> using namespace std;class A{ private:static A* m_ins;//声明&#xff0c;静态指针成员A(){} public:static A* getIns(){…

Function Arguments and Function Parameters (函数的实参和函数的形参)

Function Arguments and Function Parameters {函数的实参和函数的形参} 1. Object-Oriented Programming Using C2. Function Arguments and Function ParametersReferences 1. Object-Oriented Programming Using C https://icarus.cs.weber.edu/~dab/cs1410/textbook/index…

[SWPUCTF 2021 新生赛]gif好像有点大

[SWPUCTF 2021 新生赛]gif好像有点大 帧解一下 找到这个二维码用软件CQR解开一下 得到flag NSSCTF{The_G1F_ls_T00_b1g} [BJDCTF 2020]base?? 给了我们base64加密的密文 用python直接解密 import base64 dict{0: J, 1: K, 2: L, 3: M, 4: N, 5: O, 6: x, 7: y, 8: U, 9: …

嵌入式蓝桥杯学习1 点亮LED

cubemx配置 1.新建一个STM32G431RBT6文件 2.在System-Core中点击SYS&#xff0c;找到Debug&#xff08;设置为Serial Wire&#xff09; 3.在System-Core中点击RCC&#xff0c;找到High Speed Clock(设置为Crystal/Ceramic Resonator) 4.打开Clock Configuration &#xff0…

机器学习周志华学习笔记-第13章<半监督学习>

机器学习周志华学习笔记-第13章&#xff1c;半监督学习&#xff1e; 卷王&#xff0c;请看目录 13半监督学习13.1 生成式方法13.2 半监督SVM13.3 基于分歧的方法13.4 半监督聚类 13半监督学习 前面我们一直围绕的都是监督学习与无监督学习&#xff0c;监督学习指的是训练样本包…

安装MySQL 5.7 亲测有效

前言&#xff1a;本文是笔者在安装MySQL5.7时根据另一位博主大大的安装教程基础上做了一些修改而成 首先在这里表示对博主大大的感谢 下面附博主大大地址 下面的步骤言简意赅 跟着做就不会出错 希望各位读者耐下心来 慢慢解决安装中出现的问题~MySQL 5.7 安装教程&#xff08;全…

Navicat连接SQL Server及SpringBoot连接SQL Server(jtds)

Navicat连接SQL Server 安装自带的SQL Server客户端 去到Navicat安装目录&#xff0c;找到安装程序&#xff0c;安装即可。 安装对应版本的Microsoft ODBC Driver for SQL Server 打开Navicat输入对应的SQL Server相关信息 然后点测试连接&#xff0c;提示连接成功。 Spr…