用于LiDAR测量的1.58um单芯片MOPA(一)

--翻译自M. Faugeron、M. Krakowski1等人2014年的文章

1.简介

如今,人们对高功率半导体器件的兴趣日益浓厚,这些器件主要用于遥测、激光雷达系统或自由空间通信等应用。与固态激光器相比,半导体器件更紧凑且功耗更低,这在低功率供电环境(如飞机或卫星)应用中非常重要。在800-1200 nm范围内,对于集成和自由空间主振荡器功率放大器(MOPA)[1]-[3],人们已经做了大量研究工作。对1.5 μm唯一商用的MOPA来自QPC [4],其光纤输出功率约为700mW,线宽为500 kHz。在本文中,第一部分我们首先给出了我们的模拟仿真结果,在第二部分,我们给出了1.58 μm MOPA的芯片垂直和水平结构设计,第三部份我们介绍了MOPA器件的制造,最后,第四部分我们展示了该MOPA器件的光学和电气测量结果。

2.器件仿真

A. MOPA架构

MOPA至少包括一个激光器和一个放大器。在FP7 Britespace项目中,我们开发了一个由分布式反馈激光器(DFB)、调制器和半导体光放大器(SOA)三部分组成的集成MOPA[5]。

其中DFB为窄线宽单模激光器,我们已经开发了这款DFB,其输出功率>150 mW,光线宽优于300 kHz [6]。

调制部分需要具有15 Mbit/s的调制带宽和10 dB消光比,我们使用 SOA的增益调制特性就可以实现,与电吸收调制器(EAM)相比,EAM需要特殊的材料(光致发光峰与激光有源区相比发生偏移),我们不需要任何特定的SOA有源区。

MOPA的最大输出功率将由 SOA 的饱和功率决定,为了获得尽可能大的输出功率,我们使用喇叭形 SOA。事实上,扩大有源区可以降低功率密度并增加最大输出功率[7]。

单芯片MOPA的最简单实现方式是将不同的单元部分沿直线顺序排布,如图1a所示[4][8]。这种方式结构简单,但端面反射(即使使用抗反射涂层)以及单元之间的反射较大,这会带来多腔效应,对DFB激光器产生干扰,这些影响在[8]中进行了详细讨论。

为了减少端面反射,一种改进的方法是使波导倾斜,如图1b[9],这在 SOA中非常常见的结构,缺点是由于倾斜,难以在DFB背面端面上制作有效的高反射涂层。

另一个方法是使用曲波导结构,如图1c[10],这个结构中,DFB 激光器是直的,调制部分是弯曲的,喇叭形 SOA 是倾斜的,该结构既减少了SOA端面反射,也使得 DFB背面涂层可更好的控制。缺点是弯曲造成的损失有不确定性。

添加图片注释,不超过 140 字(可选)

图1. 三种结构:a直MOPA, b斜MOPA, c曲MOPA

B.腔的本征模

在1.55μm处,磷化铟InP半导体结构中的主要损耗是由于P掺杂层中的价带间吸收 IVBA 造成的。为了提高光功率,需要减少限制,即光学模式与给定表面之间的重叠,以及有损的p掺杂层。麻省理工学院林肯实验室在各种发射波长下开发的一种创新方法包括使用不对称包层结构[7]:在有源区和衬底之间插入一层平板层,可以吸引光学模式并将其从p掺杂层中带走。这种结构被称为板耦合光波导SCOW。板层的折射率介于有源区折射率和衬底折射率之间。图2a显示了具有标准垂直结构的InP半导体腔的光学模式,该光学模式以量子阱QW为中心,用虚线表示,并均匀分布在p掺杂的InP层和n掺杂的InP层之间。图2b显示了具有板层结构(不对称包层结构)的腔的光学模式。在这种情况下,光学模式不再以有源区为中心,而是在有源区域下方。光学模式主要分布在n掺杂的板层上,只有一小部分模式分布在p掺杂层上。

添加图片注释,不超过 140 字(可选)

图 2. (a)无板结构的光学本征模态,(b)板厚为 2μm结构的光学本征模态。

表1给出了用自编计算光学模式软件使用的相应光学参数。我们清楚地看到了 2 μm 厚板层的影响:QW 的限制因子ΓQW 除以 3.5,对 p 掺杂 InP 的限制因子(Γp-InP) 除以 6。与p掺杂层的大量重叠减少是光学损耗降低的原因。QWs约束的减少将导致结构模态增益的降低:既要确保在腔模拟阶段与QWs有足够的重叠,以保持足够的模态增益,又要使用长腔。不对称包层结构允许扩大光学本征模态:我们可以看到这种对垂直发散角影响(表1)。这一点非常重要,因为大的光学模式相当于具有低发散度的光束,这有利于更好的耦合效率。

表1.模拟标准结构和不对称包层结构的光学参数。

添加图片注释,不超过 140 字(可选)

对于不对称的包层结构,板层材料的选择非常重要,主要是折射率影响。我们在图 3 中看到,板层折射率的变化对空特性模态的强烈影响。当板层折射率为3.20时,本征模态以有源区为中心,板层对本征模态的影响很小,如图3a。当板层折射率增加到3.25时,本征模态被板层增大并强烈变形,如图3b。对于较高的板透光折射率(n = 3.31),本征模态位于板层的中心,光学模态没有很好地限制,如图3c。

添加图片注释,不超过 140 字(可选)

图 3.用于使用 3 种不同板层的光学本征模态。

板层折射率需要介于有源区折射率(nAZ ≈ 3.5)和衬底折射率(nInP = 3.16)之间。板层的实现有两种方案:方案1,使用体材料。例如,它可以是具有适当光致发光峰的InGaAsP材料[7][11]。图2和图3中绘制的所有本征模态仿真都是针对具有板层的结构进行的。这种解决方案的缺点是,我们需要在外延中开发一种具有所需折射率的特定材料,例如InGaAsP四元材料,这导致了大量的外延校准和测试,另一个缺点是四元材料的导热性能较差,这不适用于高功率器件。方案2:用“稀释”材料代替体材料[6],它由多种材料(通常为两种材料)的薄层组成,“稀释”材料的折射率是各种材料指标的平均值乘其厚度加权,如图 4a。这种解决方案的优点在于,由于可以使用InP等标准材料和势垒材料来制作板层,而无需开发四元材料,还可以通过修改层的相对厚度来调整板层折射率,它可以更灵活的设计垂直结构。这一点在图4b和4c中得到了证明,我们绘制了两种结构的光学模式,这些结构的总板厚度相同,但InP和InGaAsP的相对厚度不同。在图4b中,对于给定的结构,模式位于有源区正下方的中心位置。在图4c中,我们保持了板层的总厚度,但我们增加了InGaAsP层的厚度,并减少了InP层的厚度。这导致了平均板层折射率的增加,因为InGaAsP的指数高于InP。我们可以注意到,本征模已经移动到底部,现在位于板的中间,因为它被较高的板层折射率所吸引。

添加图片注释,不超过 140 字(可选)

图 4. (a)“稀释”板层的原理。(b)(c)2种外延结构的光学本征模态,板厚相同,但InP/InGaAsP厚度不同。

C.弯曲仿真

MOPA架构中弯曲部分(调制部分)位于在直DFB激光器和倾斜SOA之间。调制器曲率半径由截面的长度和喇叭形 SOA的倾斜度确定( 7°)。由于与弯曲的输入相比,弯曲的输出是倾斜的,因此很难直接仿真弯曲。一种方法是仿真 S 形弯曲:在这种情况下,输入和输出之间没有倾斜。我们使用 Beamprop 软件仿真了在不同长度下由 S 弯曲引起的传播损耗。结果总结在表2和图5中。发射模式是直线截面的本征模态。对于每种配置,左侧的仿真表示光学模式在 XZ 平面中的传播(Y 位置是有源区)。右边的曲线是传播模式和本征模态之间的重叠。

图5a是1 mm长的直线截面中本征模态传播的仿真图。传播没有任何传播损失,这意味着我们的本征模态计算是正确的。图 5b-d 是不同长度(1.0、1.4 和 2.0 mm)的 S 形弯的曲线图。对于 1mm 长的S形弯管,损耗4.56dB,在图 5b 中可以看到弯曲部分的光功率泄漏。对于 2 mm 长的 S 形弯曲,光学损耗低于1dB,如图 5d。在我们设计的曲 MOPA 架构中,我们只有半个 S 形弯曲,使用1mm长的弯曲调制器时,传播损耗应约为0.5dB。

添加图片注释,不超过 140 字(可选)

图 5.在不同波导上的传播的光学模式(a)直,(b)1 mm 长S 弯,(c)1.4 mm 长S 弯,(d) 2 mm 长S 弯。

表2.各种 S 弯曲长度的传播、传输和损耗。

添加图片注释,不超过 140 字(可选)

--未完待续--

[1] S. O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys, “2.2-W Continuous-Wave Diffraction-Limited Monothically Integrated Master Oscillator Power Amplifier at 854 nm,” IEEE Photon. Technol. Lett., vol. 9, no. 9, pp. 440-442, Apr., 1997.

[2] S. O’Brien, A. Schoenfelder, and R. J. Lang, “5-W CW Diffraction-Limited InGaAs Broad-Area Flared Amplifier at 970 nm,” IEEE Photon. Technol. Lett., vol. 9, no. 9, pp. 1217-1219, Sep., 1997.

[3] S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz,” Opt. Express., vol. 19, no. 8, pp. 7077–7083, Apr. 2011.

[4] M. L. Osowski, Y. Gewirtz, R. M. Lammert, S. W. Oh, C. Panja, V. C. Elarde, L. Vaissié, F. D. Patel, and J. E. Ungar, “High-power semiconductor lasers at eye-safe wavelengths,” in proc. SPIE 7325, Laser Technology for Defense and Security V, paper 73250V, May, 2009.

[5] I. Esquivias, A. Pérez-Serrano, J. M. G. Tijero, M. Faugeron, F. van Dijk, M. Krakowski, G. Kochem, M. Traub, J. Barbero, P. Adamiec, X. Ai, J. Rarity, M. Quatrevalet, and G. Ehret, “Random-modulation CW lidar system for space-borne carbon dioxide remote sensing based on a high-Brightness semiconductor Laser,” in proc. ICSO 2014, International Conference on Space Optics, paper 66861, October, 2014.

[6] M. Faugeron, M. Tran, O. Parillaud, M. Chtioui, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. Van Dijk, “High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth,” IEEE Photon. Technol. Lett., vol. 25, no. 1, pp. 7-10, Jan, 2013.

[7] P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-Power, Low-Noise 1.5-µm Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications,” IEEE J. Sel Top. Quantum Electron., vol. 17, no. 6, pp. 1698–1714, Nov/Dec. 2011.

[8] M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, and H. Wenzel, “Measurement and Simulation of Distributed-Feedback Tapered Master-Oscillator Power Amplifiers,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 609-616, June, 2009.

[9] P. A. Yazaki, K. Komori, G. Bendelli, S. Arai, and Y. Suematsu, “A GaInAsP/InP Tapered-Waveguide Semiconductor Laser Amplifier Integrated with a 1.5 µm Distributed Feedback Laser,” IEEE Photon. Technol. Lett., vol. 3, no. 12, pp. 1060-1063, Dec., 1991.

[10] L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally coupled 1.55 µm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier,” Opt. Lett., vol. 37, no. 21, pp. 4525-4527, Nov., 2012.

[11] M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. Van Dijk, “High Peak Power, Narrow RF Linewidth Asymmetrical Cladding Quantum-Dash Mode-Locked Lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, pp. 1101008, July–Aug, 2013.

注:本文由天津见合八方光电科技有限公司挑选并翻译,旨在推广和分享相关SOA半导体光放大器基础知识,助力SOA技术的发展和应用。特此告知,本文系经过人工翻译而成,虽本公司尽最大努力保证翻译准确性,但不排除存在误差、遗漏或语义解读导致的不完全准确性,建议读者阅读原文或对照阅读,也欢迎指出错误,共同进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/928222.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【maven-5】Maven 项目构建的生命周期:深入理解与应用

1. 生命周期是什么 ​在Maven出现之前,项目构建的生命周期就已经存在,软件开发人员每天都在对项目进行清理,编译,测试及部署。虽然大家都在不停地做构建工作,但公司和公司间,项目和项目间,往往…

数字时代的文化宝库:存储技术与精神生活

文章目录 1. 文学经典的数字传承2. 音乐的无限可能3. 影视艺术的数字化存储4. 结语 数字时代的文化宝库:存储技术与精神生活 在数字化的浪潮中,存储技术如同一座桥梁,连接着过去与未来,承载着人类文明的瑰宝。随着存储容量的不断增…

STM32标准库-FLASH

FLASH模仿EEPROM STM32本身没有自带EEPROM,但是自带了FLASH存储器。 STM32F103ZET6自带 1M字节的FLASH空间,和 128K64K的SRAM空间。 STM32F4 的 SPI 功能很强大,SPI 时钟最高可以到 37.5Mhz,支持 DMA,可以配置为 SPI协…

重学设计模式-工厂模式(简单工厂模式,工厂方法模式,抽象工厂模式)

在平常的学习和工作中,我们创建对象一般会直接用new,但是很多时候直接new会存在一些问题,而且直接new会让我们的代码变得非常繁杂,这时候就会巧妙的用到设计模式,平常我们通过力扣学习的算法可能并不会在我们工作中用到…

linux(centos) 环境部署,安装JDK,docker(mysql, redis,nginx,minio,nacos)

目录 1.安装JDK (非docker)1.1 将文件放在目录下: /usr/local/jdk1.2 解压至当前目录1.3 配置环境变量 2.安装docker2.1 验证centos内核2.2 安装软件工具包2.3 设置yum源2.4 查看仓库中所有docker版本,按需选择安装2.5 安装docker2.6 启动docker 并 开机…

算法日记 40 day 单调栈

最后两题了,直接上题目。 题目:接雨水 42. 接雨水 - 力扣(LeetCode) 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入&#xff1…

yagmail邮件发送库:如何用Python实现自动化邮件营销?

🎥 作者简介: CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容 🌸个人主页: 长风清留杨的博客 🍃形式准则: 无论成就大小,…

【RL Base】强化学习:信赖域策略优化(TRPO)算法

📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…

黑马2024AI+JavaWeb开发入门Day04-SpringBootWeb入门-HTTP协议-分层解耦-IOCDI飞书作业

视频地址:哔哩哔哩 讲义作业飞书地址:day04作业(IOC&DI) 作业很简单,主要是练习拆分为三层架构controller、service、dao,并基于IOC & DI进行解耦。 1、结构: 2、代码 网盘链接&…

(长期更新)《零基础入门 ArcGIS(ArcMap) 》实验三----学校选址与路径规划(超超超详细!!!)

目录 实验三 学校选址与道路规划 3.1 实验内容及目的 3.1.1 实验内容 3.1.2 实验目的 3.2 实验方案 3.3 操作流程 3.3.1 环境设置 3.3.2 地势分析 (1)提取坡度: (2)重分类: 3.3.3 学校点分析 (1)欧氏距离: (2)重分类: 3.3.4 娱乐场所点分析 (1)欧氏距离…

【Python网络爬虫笔记】8- (BeautifulSoup)抓取电影天堂2024年最新电影,并保存所有电影名称和链接

目录 一. BeautifulSoup的作用二. 核心方法介绍2.1 构造函数2.2 find()方法2.3 find_all()方法2.4 select()方法 三. 网络爬虫中使用BeautifulSoup四、案例爬取结果 一. BeautifulSoup的作用 解析HTML/XML文档:它可以将复杂的HTML或XML文本转换为易于操作的树形结构…

MATLAB期末复习笔记(中)

目录 三、MATLAB函数和程序结构 1.MATLAB文件 2.变量和数据类型 (1)变量 (2)变量类型 (3)字符串 3.函数文件 (1)函数文件规范 (2)子函数和私有函数 &…

算法刷题Day8:BM30 二叉搜索树与双向链表

题目 牛客网题目传送门 思路 对二叉搜索树进行中序遍历,结果就是按序数组。因此想办法把前面遍历过的节点给记下来,记作pre。当遍历到某个节点node的时候,令前驱指向pre,然后让pre的后驱指向node。 代码 class TreeNode:def…

深入解析 Dubbo 中的常见问题及优化方案: 数据量限制与配置错误20241203

🌟 深入解析 Dubbo 中的常见问题及优化方案:数据量限制与配置错误 在分布式系统中,Dubbo 作为高性能的 RPC 框架广泛应用于企业服务化架构。然而,在实际使用过程中,开发者往往会遇到一些复杂问题,比如 数据…

debian ubuntu armbian部署asp.net core 项目 开机自启动

我本地的环境是 rk3399机器,安装armbian系统。 1.安装.net core 组件 sudo apt-get update && \sudo apt-get install -y dotnet-sdk-8.0或者安装运行库,但无法生成编译项目 sudo apt-get update && \sudo apt-get install -y aspnet…

【AI系统】Ascend C 编程范式

Ascend C 编程范式 AI 的发展日新月异,AI 系统相关软件的更新迭代也是应接不暇,作为一本讲授理论的作品,我们将尽可能地讨论编程范式背后的原理和思考,而少体现代码实现,以期让读者理解 Ascend C 为何这样设计&#x…

hadoop环境配置-创建hadoop用户+更新apt+安装SSH+配置Java环境

一、创建hadoop用户(在vm安装的ubantu上打开控制台) 1、sudo useradd -m hadoop -s /bin/bash (创建hadoop用户) 2、sudo passwd hadoop (设置密码) 3、sudo adduser hadoop sudo(将新建的hadoop用户设置为管理员) 执行如下图 将…

嵌入式系统应用-LVGL的应用-平衡球游戏 part1

平衡球游戏 part1 1 平衡球游戏的界面设计2 界面设计2.1 背景设计2.2 球的设计2.3 移动球的坐标2.4 用鼠标移动这个球2.5 增加边框规则2.6 效果图 3 为小球增加增加动画效果3.1 增加移动效果代码3.2 具体效果图片 平衡球游戏 part2 第二部分文章在这里 1 平衡球游戏的界面设计…

从被动响应到主动帮助,ProActive Agent开启人机交互新篇章

在人工智能领域,我们正见证着一场革命性的变革。传统的AI助手,如ChatGPT,需要明确的指令才能执行任务。但现在,清华大学联合面壁智能等团队提出了一种全新的主动式Agent交互范式——ProActive Agent,它能够主动观察环境…

2.mysql 中一条更新语句的执行流程是怎样的呢?

前面我们系统了解了一个查询语句的执行流程,并介绍了执行过程中涉及的处理模块。 相信你还记得,一条查询语句的执行过程一般是经过连接器、分析器、优化器、执行器等功能模块,最后到达存储引擎。 那么,一条更新语句的执行流程又…