DataWhale—PumpkinBook(TASK07支持向量机)

课程开源地址及相关视频链接:(当然这里也希望大家支持一下正版西瓜书和南瓜书图书,支持文睿、秦州等等致力于开源生态建设的大佬✿✿ヽ(°▽°)ノ✿)

Datawhale-学用 AI,从此开始

【吃瓜教程】《机器学习公式详解》(南瓜书)与西瓜书公式推导_哔哩哔哩_bilibili

支持向量机:https://www.bilibili.com/video/BV1Mh411e7VU?p=9

软间隔与支持向量回归:https://www.bilibili.com/video/BV1Mh411e7VU?p=10

正文部分

支持向量机主要解决二分类问题,通过学习高维空间的线性分割边界解决原始数据线性不可分问题。
基础的模型输入是原始数据,输出是高维分割超平面,预测时通过某条数据在超平面的哪一侧表达类别归属。

SVM同时也能应用于多分类回归单分类异常检测等问题。 

直觉上,线性可分二分类,最好的分类边界应该是使靠的最近的不同类别的数据分开的越远越好。接近边界的数据能被良好地分开,远离边界的数据,分类自然更没问题。
SVM就是尝试寻找这个分割边界,也就是最大化上图中的红色边界和虚线之间的距离,由于是线性关系,系数可以缩放,为方面处理,令m=1,可得最大化的目标函数是1 / ||w||,等价于:

 注意:y ϵ {+1, -1},m=1,不等式约束表达数据都在上图边界构成的管道外,保证w是最优化边界的参数。

考虑不等式约束,根据拉格朗日乘子法,目标函数变为:

拉格朗日对偶问题:

结合KKT条件,最终的目标函数为:

注意最终目标函数的形式:

  • 目标函数的变量是拉格朗日乘子α,且只和数据集(x, y)有关,可以通过SMO(sequential minimal optimization)最优化方法方便求解α。

  • 根据KKT约束:α_i * g_i(w) = 0,g_i(w) ≤ 0,可知当g_i = 0,α_i > 0,即在上图最近虚线边界上时;当g_i < 0,α_i = 0。

  • α_i > 0 对应的样本点,称为支持向量,少量的数据参与训练,能有效降低学习的复杂度。

  • 目标函数样本间仅以<内积>形式出现,这是转换为对偶问题后,比较吸引人的形式。

  • 内积形式可以方便地将x打包映射到Φ(x),而不影响之前的整个推导,边界关于Φ(x)是线性的;Φ(x)一般是个向量,映射后的空间以向量为基本元素的希尔伯特空间,暂且称之为“内积空间”。

  • 内积空间中可以通过核函数技巧,使映射后空间变得更高维复杂,但计算复杂度和原始低维一致。

  • 映射x->Φ(x)的动机来自于低维线性不可分的数据,高维可能可以。

常见的核函数有四种:

以上核函数的计算复杂度都在原始x空间内。RBF即高斯核函数,示意图如下:

不同核函数,分类效果,大致如下:

给定一个样本,预测的时候,SVC如何确定属于哪一个分类呢?



其实就是将样本数据代入映射后的高维空间,按照位置,线性判别即可。


SVC只能输出样本属于哪一个分类,而不能像其他分类器一样输出概率。

想到只有支持向量参与学习,SVM的速度应该很快,这是一个小误区,因为确定支持向量本身也是学习的一部分。

以主流的libsvm的复杂度为例:
 

复杂度大概为o(n^2) ~ o(n^3),随着样本的增加,SVM的速度会变得很慢。

基础的SVM算法通过拉格朗日相关最优化方法,将欧拉空间线性不可分问题映射到希尔伯特空间线性可分,并通过核函数技巧支持向量选择,在高维空间有效解决二分类问题。

参考文献

scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentation

scikit-learn (sklearn) 官方文档中文版 - sklearn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/926619.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

排序算法之插入排序篇

插入排序 思路&#xff1a; 就是将没有排序的元素逐步地插入到已经排好序的元素后面&#xff0c;保持元素的有序 视频的实现过程如下&#xff1a; 插入排序全过程 代码实现过程如下&#xff1a; public static void Insertion(int[] arr) { for (int i 1; i < arr.length…

3DMAX星空图像生成器插件使用方法详解

3DMAX星空图像生成器插件&#xff0c;一键生成星空或夜空的二维图像。它可用于创建天空盒子或空间场景&#xff0c;或作为2D艺术的天空背景。 【主要特点】 -单击即可创建星空图像或夜空。 -星数、亮度、大小、形状等参数。 -支持任何图像大小&#xff08;方形&#xff09;。…

Flutter 权限申请

这篇文章是基于permission_handler 10.2.0版本写的 前言 在App开发过程中我们经常要用到各种权限&#xff0c;我是用的是permission_handler包来实现权限控制的。 pub地址&#xff1a;https://pub.dev/packages/permission_handler permission_handler 权限列表 变量 Androi…

前端学习笔记之FileReader

概念 FileReader接口允许网页应用程序异步读取用户计算机上存储的文件&#xff08;或原始数据缓冲区&#xff09;的内容&#xff0c;使用File或Blob对象来制定要读取的文件或数据。 File对象可以通过用户使用<input>元素选择文件后返回的FileList对象获得&#xff0c;或…

通过shell脚本分析部署nginx网络服务

要求 1.接收用户部署的服务名称 2.判断服务是否安装 已安装&#xff1b;自定义网站配置路径为/www&#xff1b;并创建共享目录和网页文件&#xff1b;重启服务 没有安装&#xff1b;安装对应的软件包 3.测试 判断服务是否成功运行&#xff1b; 已运行&#xff0c;访问网站…

Java基础——(三)对象和类

1. 面向对象程序设计概述 1.1 OOP OOP&#xff1a;Object Oriented Programming&#xff0c;面向对象编程&#xff1b;OOD&#xff1a;Object Oriented Design&#xff0c;面向对象设计&#xff1b;OOA&#xff1a;Object Oriented Analyse&#xff0c;面向对象分析。 面向对…

vue2日历组件

【效果图】 <template><div style"width: 100%"><!-- <div> --><!-- <div>{{ startDate.getMonth() 1 - startDate.getDate() }}</div><div>{{ endDate.getMonth() 1 - endDate.getDate() }}</div> --&g…

Redis中的分布式锁(步步为营)

分布式锁 概述 分布式锁指的是&#xff0c;所有服务中的所有线程都去获取同一把锁&#xff0c;但只有一个线程可以成功的获得锁&#xff0c;其他没有获得锁的线程必须全部等待&#xff0c;直到持有锁的线程释放锁。 分布式锁是可以跨越多个实例&#xff0c;多个进程的锁 分布…

mmsegmentation自己的数据集

我最大的问题就是没安装官方给定的mask转换格式来转换 这种带白色的不行哦&#xff01; 黑色的可以&#xff0c;其实mask*50就可以看清楚标记的轮廓之类的。 数据集格式转换按照A,B,C代码直接转换&#xff1a;https://github.com/TommyZihao/Label2Everything/tree/main/lab…

yolov8的深度学习环境安装(cuda12.4、ubuntu22.04)

目录 一、先安装基础环境包 1.首先给Ubuntu安装Chrome浏览器&#xff08;搜索引擎换成百度即可&#xff09; 2、ubuntu 22.04中文输入法安装 3、安装 terminator 4、安装WPS for Linux 5、安装其它之前需要先安装anaconda 6、安装配置anaconda 7、安装完成anaconda后创建…

洛谷 B3626 跳跃机器人 C语言 记忆化搜索

题目&#xff1a; https://www.luogu.com.cn/problem/B3626 题目描述 地上有一排格子&#xff0c;共 n 个位置。机器猫站在第一个格子上&#xff0c;需要取第 n 个格子里的东西。 机器猫当然不愿意自己跑过去&#xff0c;所以机器猫从口袋里掏出了一个机器人&#xff01;这…

小型文件系统如何选择?FatFs和LittleFs优缺点比较

1 概述 文件系统在嵌入式系统中的作用不可或缺&#xff0c;它提供了对非易失性存储设备&#xff08;如闪存、SD卡等&#xff09;上的数据进行有效组织和管理的能力。通过文件系统&#xff0c;嵌入式系统可以像在传统计算机上一样创建、读取、写入和删除文件&#xff0c;实现了…

【JAVA] 杂谈: java中的拷贝(克隆方法)

这篇文章我们来介绍什么是拷贝&#xff0c;并且实现浅拷贝到深拷贝。 目录 一、浅拷贝 1.1 clone 方法 1.2 实现浅拷贝&#xff1a; 1.2.1 重写 clone方法 1.2.2 实现接口 Cloneable 1.2.3 调用克隆方法 1.2.4 原理图&#xff1a;​ 1.3 浅拷贝的不足 1.3.1 增加引用…

JS听到了双生花的回响

日期对象 学会了日期对象可以让网页显示日期 是用来表示时间的对象&#xff0c;可以得到当前系统的时间 实例化 new关键字&#xff0c;就是实例化的代表 就比如说&#xff0c;你没有对象&#xff0c;但是你是程序员&#xff0c;这个时候你可以先定义一个类&#xff08;你的…

BUUCTF—Reverse—Java逆向解密(10)

程序员小张不小心弄丢了加密文件用的秘钥&#xff0c;已知还好小张曾经编写了一个秘钥验证算法&#xff0c;聪明的你能帮小张找到秘钥吗&#xff1f; 注意&#xff1a;得到的 flag 请包上 flag{} 提交 需要用专门的Java反编译软件:jd-gui 下载文件&#xff0c;发现是个class文…

mac上的建议xftp 工具

mac上的建议xftp 工具 最近使用mac比较频繁了&#xff0c;但是第一次重度使用mac里面有很多的工具都是新的&#xff0c;有的window版本的工具无法使用。 xftp 的平替 Cyberduck 从它的官网上下载是免费的&#xff0c;但是如果使用 Apple store 要花费198呢。这不就剩下一大笔…

【文献阅读】自动化构音障碍严重程度分类:声学特征与深度学习技术的研究

自动化构音障碍严重程度分类:声学特征与深度学习技术的研究 文章目录 自动化构音障碍严重程度分类:声学特征与深度学习技术的研究思维导图摘要I. 引言A. 动机与相关工作II. 数据库III. 实验设计A. 分析 MFCC 和 CQCCB. 分析语言障碍特定特征C. 分析 i-向量IV. 特征设计V. 分类…

基于HTML和CSS的校园网页设计与实现

摘要 随着计算机、互联网与通信技术的进步&#xff0c;Internet在人们的学习、工作和生活中的地位也变得越来越高&#xff0c;校园网站已经成为学校与学生&#xff0c;学生与学生之间交流沟通的重要平台&#xff0c;对同学了解学校内发生的各种事情起到了重要的作用。学校网站…

操作系统 | 学习笔记 | 王道 | 2.2处理机调度

2.2 处理机调度 文章目录 2.2 处理机调度2.2.1 调度的概念2.2.2 调度的目标2.2.3 调度的实现2.2.4 典型的调度算法错题总结&#xff1a; 2.2.1 调度的概念 调度的基本概念 处理机调度是对处理机进行分配&#xff0c;即从就绪队列中按照一定的算法&#xff08;公平、高效的原则&…

论文概览 |《Urban Analytics and City Science》2023.05 Vol.50 Issue.4

本次给大家整理的是《Environment and Planning B: Urban Analytics and City Science》杂志2023年5月第50卷第4期的论文的题目和摘要&#xff0c;一共包括19篇SCI论文&#xff01; 论文1 Data analytics and sustainable urban development in global cities 全球城市的数据…