操作系统 | 学习笔记 | 王道 | 2.2处理机调度

2.2 处理机调度

文章目录

      • 2.2 处理机调度
        • 2.2.1 调度的概念
        • 2.2.2 调度的目标
        • 2.2.3 调度的实现
        • 2.2.4 典型的调度算法
        • 错题总结:

2.2.1 调度的概念

img

  1. 调度的基本概念

    处理机调度是对处理机进行分配,即从就绪队列中按照一定的算法(公平、高效的原则)去选择一个进程并将处理机分配给它运行,以实现进程并发地执行。

  2. 调度对层次

    一个作业从提交开始直到完成,要经历以下三级调度,如下图所示。

    image-20230911135226560

    • 高级调度(作业调度)

      img

      内存空间有限时,无法将用户提交的作业全部放入内存,需要按一定的原则从外存的作业 后备队列 中挑选一个作业调入内存,并创建进程。

      每个作业只调入一次,调出一次。作业调入时会建立PCB,调出时才撤销PCB。

      作业:一个具体的任务

      多道批处理系统中大多配有作业调度,而其他系统中通常不需要配置作业调度。

      • 发生频率最低 外存→内存(面向作业)
    • 中级调度(内存调度)img

      内存不够时,可将某些进程的数据调出外存。等内存空闲或者进程需要运行时,按照某种策略从 挂起队列 中选择合适的进程重新调入内存。

      暂时调到外存等待的进程状态为挂起状态。被挂起的进程PCB会被组织成挂起队列。

      • 外存→内存(面向进程)
    • 低级调度(进程调度)

      img

      在内存中的按照某种策略从 就绪队列 中选取一个进程,将处理机分配给它。

      • 发生频率高 内存→CPU
  3. 三级调度的联系

    • 七状态模型

      在这里插入图片描述

      挂起和阻塞的区别: 两种状态都不获得 CPU 服务,但挂起状态将进程调到外存,而阻塞态还在内存中。

    • 三层调度对比

      要做什么在哪调度发生频率对进程状态影响
      高级调度 (作业调度)从后备队列中选择合适的作业 将其调入内存,并为其创建进程外存→内存 (面向作业)最低无→创建态→就绪态
      中级调度 (内存调度)从挂起队列中选择合适的进程 将其数据调回内存外存→内存 (面向进程)中等挂起态→就绪态 阻塞挂起→阻塞态
      低级调度 (进程调度)从就绪队列中选择一个进程 为其分配处理机内存→CPU最高就绪态→运行态
    • 三层调度联系

      • 1)作业调度为进程活动做准备,进程调度使进程正常活动起来。
      • 2)中级调度将暂时不能运行的进程挂起,中级调度处于作业调度和进程调度之间。
      • 3)作业调度次数少,中级调度次数略多,进程调度频率最高。
      • 4)进程调度是最基本的,不可或缺。
2.2.2 调度的目标

img

不同的调度算法具有不同的特性,在选择调度算法时,必须考虑算法的特性。评价标准如下。

  1. CPU利用率:指CPU“忙碌”的时间占总时间的比例。
    利用率 = 忙碌的时间 总时间 利用率=\frac{忙碌的时间}{总时间} 利用率=总时间忙碌的时间

  2. 系统吞吐率:单位时间内完成作业的数量。
    系统吞吐率 = 总共完成了多少道作业 总共花了多少时间 系统吞吐率=\frac{总共完成了多少道作业}{总共花了多少时间} 系统吞吐率=总共花了多少时间总共完成了多少道作业

  3. 周转时间:指从作业被提交给系统开始,到作业完成为止的这段时间间隔。
    周转时间 = 作业完成时间 − 作业提交时间 周转时间=作业完成时间-作业提交时间 周转时间=作业完成时间作业提交时间
    平均周转时间:指多个作业周转时间的平均值。
    平均周转时间 = 各个作业周转时间之和 作业数 平均周转时间=\frac{各个作业周转时间之和}{作业数} 平均周转时间=作业数各个作业周转时间之和
    带权周转时间:作业周转时间与作业实际运行时间的比值。带权周转时间必然≥1
    带权周转时间 = 作业周转时间 作业实际运行时间 = 作业完成时间 − 作业提交时间 作业实际运行时间 带权周转时间=\frac{作业周转时间}{作业实际运行时间}=\frac{作业完成时间-作业提交时间}{作业实际运行时间} 带权周转时间=作业实际运行时间作业周转时间=作业实际运行时间作业完成时间作业提交时间
    平均带权周转时间:多个作业带权周转时间的平均值。
    平均带权周转时间 = 各个作业带权周转时间之和 作业数 平均带权周转时间=\frac{各个作业带权周转时间之和}{作业数} 平均带权周转时间=作业数各个作业带权周转时间之和

  4. 等待时间

    等待时间,指进程/作业处于等待处理机状态时间之和,等待时间越长,用户满意度越低。
    等待时间 = 周转时间 − 运行时间 等待时间=周转时间-运行时间 等待时间=周转时间运行时间

    • 对于进程来说,等待时间就是指进程建立后等待被服务的时间之和。
    • 对于作业来说,不仅要考虑建立进程后的等待时间,还要加上作业在外存后备队列中等待的时间。

    平均等待时间:各个进程/作业等待时间的平均值。
    平均等待时间 = 各个进程 / 作业等待时间之和 进程 / 作业数 平均等待时间=\frac{各个进程/作业等待时间之和}{进程/作业数} 平均等待时间=进程/作业数各个进程/作业等待时间之和

  5. 响应时间:从用户提交请求到首次产生响应所用的时间。

2.2.3 调度的实现
  1. 调度程序(调度器)

    img

    img

    用于调度和分派CPU 的组件称为调度程序,它通带由三部分组成,如图所示。

    image-20230911150133174

    • 排队器:将系统中的所有就绪进程按照一定的策略排成一个或多个队列,以便于调度程序选择。每当有一个进程转变为就绪态时,排队器便将它插入到相应的就绪队列中。

    • 分派器:依据调度程序所选的进程,将其从就绪队列中取出,将CPU分配给新进程。

    • 上下文切换器:在对处理机进行切换时,会发生两对上下文的切换操作:

      • 第一对,将当前进程的上下文保存到其PCB中,再装入分派程序的上下文,以便分派程序运行;
      • 第二对,移出分派程序的上下文,将新选进程的CPU现场信息装入处理机的各个相应寄存器。
  2. 调度的时机

    img

    img

    • 需要调度
      • 主动放弃:进程正常终止;运行过程中发生异常而终止;主动阻塞(比如等待IO)
      • 被动放弃:时间片用完;有更紧急的事情处理(I/O中断);有更高优先级的进程进入就结队列
    • 不能调度
      • 处理中断的过程中
      • 进程在操作系统内核程序临界区中
      • 原子操作过程中

    临界资源:一个时间段内只允许一个进程使用的资源。各进程需要互斥地访问临界资源。

    临界区:访问临界资源的那段代码。

    内核程序临界区一般是用来访问某种内核数据结构的,比如进程的就绪队列(由各就绪进程的PCB组成)

  3. 进程调度方式

    img

    • 非剥夺调度方式

      又称非抢占方式。即,只允许进程主动放弃处理机。在运行过程中即便有更紧迫的任务到达,当前进程依然会继续使用处理机,直到该进程终止或主动要求进入阻塞态。

      实现简单,系统开销小但是无法及时处理紧急任务,适合于早期的批处理系统

    • 剥夺调度方式

      又称抢占方式。当一个进程正在处理机上执行时,如果有一个更重要或更紧迫的进程需要使用处理机,则立即暂停在执行的进程,将处理机分配给更重要紧迫的那个进程。

      可以优先处理更紧急的进程,也可实现让各进程按时间片轮流执行的功能(通过时钟中断)。适合于分时操作系统、实时操作系统

  4. 进程切换

    • 上下文切换:切换CPU到另一个进程需要保存当前进程状态并恢复另一个进程的状态。

      • 对原来运行进程各种数据的保存
      • 对新的进程各种数据的恢复(如:程序计数器、程序状态字、各种数据寄存器等处理机现场信息,这些信息一保存在进程控制块)

      上下文:某一时刻CPU寄存器和程序计数器的内容。

      切换流程:

      • 挂起一个进程,保存CPU上下文,包括程序计数器和其他寄存器。
      • 更新PCB信息。
      • 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
      • 选择另一个进程执行,并更新其PCB。
      • 跳转到新进程PCB中的程序计数器所指向的位置执行。
      • 恢复处理机上下文。
    • 上下文切换的消耗

      上下文切换需要消耗大量CPU时间,有些处理器有多个寄存器组,则切换只需改变指针。

      进程切换是有代价的,因此如果过于频繁的进行进程调度、切换,必然会使整个系统的效率降低,使系统大部分时间都花在了进程切换上,而真正用于执行进程的时间减少。

    • 上下文切换与模式切换

      • 模式切换是用户态和内核态之间的切换,CPU逻辑上可能还在执行同一进程。用户进程最开始都运行在用户态,若进程因中断或异常进入核心态运行,执行完后又回到用户态刚被中断的进程运行。
      • 上下文切换切换了进程,只能发生在内核态,它是多任务操作系统中的一个必需的特性。

    不能进行调度和切换的情况:

    1.处理中断的过程中

    2.需要完全屏蔽中断的原子操作过程中

  5. 闲逛进程

    调度程序永远的备胎,没有其他就绪进程时,运行闲逛进程(idle)

    特性

    • 优先级最低;
    • 可以是0地址指令,占一个完整的指令周期(指令周期末尾例行检查中断)
    • 能耗低

    闲逛进程不需要CPU之外的资源,它不会被阻塞。

  6. 两种线程的调度

    • 用户级线程调度。由于内核并不知道线程的存在,所以内核还是和以前一样,选择一个进程,并给予时间控制。由进程中的调度程序决定哪个线程运行。
    • 内核级线程调度。内核选择一个特定线程运行,通常不用考虑该线程属于哪个进程。对被选择的线程赋予一个时间片,如果超过了时间片,就会强制挂起该线程。

    用户级线程的线程切换在同一进程中进行,仅需少量的机器指令;

    内核级线程的线程切换需要完整的上下文切换、修改内存映像、使高速缓存失效,这就导致了若干数量级的延迟。

2.2.4 典型的调度算法

img

img

  1. 先来先服务(FCFS)

    • 算法思想:主要从“公平”的角度考虑(类似于我们生活中排队买东西的例子)
    • 算法规则:按照作业/进程到达的先后顺序进行服务
    • 用于作业/进程调度:
      • 用于作业调度时,考虑是哪作业先达后备队列;
      • 用于进程调度时,考虑的是哪个进程先到达就绪队列
    • 优缺点:
      • 优点:公平、算法实现简单
      • 缺点:排在长作业(进程)后面的短作业需要等待很长时间,带权周转时间很大,对短作业来说用户体验不好。即,FCFS算法对长作业有利,对作(Eg:排队。)
    • 非抢占式的算法;不会导致饥饿

    img

    img

  2. 短作业优先(SJF)

    • 算法思想:追求最少的平均等待时间,最少的平均周转时间、最少的平均平均带权周转时间

    • 算法规则:最短的作业/进程优先得到服务(所谓“最短”,是指要求服务时间最短)

    • 用于作业/进程调度

      • 即可用于作业调度,也可用于进程调度。
      • 用于进程调度时为"短进程优先"(SPF,Shortest Process First)
    • 优缺点

      • 优点:

        “最短的”平均等待时间、平均周转时间;

        • 在所有进程都几乎同时到达时,采用SJF调度算法的平均等待时间、平均周转时间最少;
        • “抢占式的短作业/进程优先调度算法(最短剩余时间优先,SRNT算法)的平均等待时间、平均周转时间最少”
      • 缺点:不公平。对短作业有利,对长作业不利。可能产生饥饿现象。另外,作业进程的运行时间是由用户提供的,并不一定真实,不一定能做到真正的短作业优先。

    • 抢占式的算法;会导致饥饿

      SJF和SPF是非抢占式的算法。但是也有抢占式的版本:最剩间优先算法(SRTN,Shortest Remaining Time Next)

      每当有进程加入就绪队列改变时就需要调度,如果新到达的进程剩余时间比当前运行的进程剩余时间更短,则由新进程抢占处理机,当前运行进程重新回到就绪队列。另外,当一个进程完成时也需要调度

    img

    img

    img

    img

  3. 高响应比优先(HRRN)

    饿的越久,叫的越大声

    • 算法思想:要综合考虑作业/进程的等待时间和要求服务的时间

    • 算法规则:在每次调度时先计算各个作业/进程的响应比,选择响应比最高的作业/进程为其服务
      响应比 = 等待时间 + 要求服务时间 要求服务时间 响应比=\frac{等待时间+要求服务时间}{要求服务时间} 响应比=要求服务时间等待时间+要求服务时间
      高响应比优先算法:非抢占式的调度算法,只有当前运行的进程主动放CPU(常/常成,主动阻塞),需行调度,调度时计算所有就绪进程的响应比,选响应比最高的进程上处理机。

    • 用于作业/进程调度:即可用于作业调度,也可用于进程调度

    • 优缺点

      • 综合考虑了等待时间和运行时间(要求服务时间)等待时间相同时,要求服务时间短的优先(SJF的优点);
      • 要求服务时间相同时,等待时间长的优先(FCFS的优点)
      • 对于长作业来说,随着等待时间越来越久,其响应比也会越来越大,从而避免了长作业饥饿的问题
    • 非抢占式的算法;不会导致饥饿

      非抢占式的算法。因此只有当前运行的作业/进程主动放弃处理机时,才需要调度,计算响应比

      img

      img

  4. 时间片轮转调度算法(RR)

    img

    img

    img

    • 算法思想:公平地、轮流地为各个进程服务,让每个进程在一定时间间隔内都可以得到响应

    • 算法规则:按照各进程到达就绪队列的顺序,轮流让各个进程执行一个时间片(如100ms)。若进程未在一个时间片内执行完,则剥夺处理机,将进程重新放到就绪队列队尾重新排队。

    • 用于作业/进程调度:用于进程调度(只有作业放入内存建立了相应的进程后,才能被分配处理机时间片)

    • 优缺点

      • 优点:公平;响应快,适用于分时操作系统;
      • 缺点:由于高频率的进程切换,因此有一定开销;不区分任务的紧急程度。
    • 抢占式的算法;不会导致饥饿

      若进程未能在时间片内运行完,将被强行剥夺处理机使用权,因此时间片轮转调度算法属于抢占式的算法。由时钟装置发出时钟中断来通知CPU时间片已到

  5. 优先级调度算法

    • 算法思想:随着计算机的发展,特别是实时操作系统的出现,越来越多的应用场景需要根据任务的紧急程度来决定处理顺序

    • 算法规则:每个作业/进程有各自的优先级,调度时选择优先级最高的作业/进程

    • 用于作业/进程调度:既可用于作业调度,也可用于进程调度。甚至,还会用于在之后会学习的I/O调度中

    • 优缺点

      • 优点:用优先级区分紧急程度、重要程度,适用于实时操作系统。可灵活地调整对各种作业/进程的偏好程度
      • 缺点:若源源不断地有高优先级进程到来,则可能导致饥饿
    • 抢占式/非抢占式的算法;会导致饥饿

      抢占式、非抢占式都有。做题时的区别在于:非抢占式只需在进程主动放弃处理机时进行调度即可,而抢占式还需在就绪队列变化时,检查是否会发生抢占。

    • 优先级排序

      系统进程优先级高于用户进程

      前台进程优先级高于后台进程

      操作系统更偏好I/O型进程(或称I/O繁忙型进程)

      注:与I/O型进程相对的是计算型进程(或称CPU繁忙型程)

    • 优先级分类:根据优先级是否可以动态改变,可将优先级分为静态优先级和动态优先级两种。

      • 静态优先级:创建进程时确定,之后一直不变
      • 动态优先级:创建进程时有一个初始值,之后会根据情况动态地调整优先级。

      就绪队列未必只有一个,可以按照不同优先级来组织。另外,也可以把优先级高的进程排在更靠近队头的位置

      img

      img

      img

      img

  6. 多级队列调度算法

    • 系统中按进程类型设置多个队列,进程创建成功后插入某个队列

    image-20230911165310270

    • 队列之间可采取固定优先级,或时间片划分

      • 固定优先级:高优先级空时低优先级进程才能被调度
      • 时间片划分:如三个队列分配时间50%、40%、10%
    • 各队列可采用不同的调度策略,如

      系统进程队列采用优先级调度、交互式队列采用RR、批处理队列采用FCFS

  7. 多级反馈队列调度算法

    image-20230911165245192

    • 算法思想:对其他调度算法的折中权衡

    • 算法规则:

      • 1.设置多级就绪队列,各级队列优先级从高到低,时间片从小到大
      • 2.新进程到达时先进入第1级队列,按FCFS原则排队等待被分配时间片,若用完时间片进程还未结束,则进程进入下一级队列队尾。如果此时已经是在最下级的队列,则重新放回该队列队尾
      • 3.只有第k级队列为空时,才会为k+1级队头的进程分配时间片
    • 用于作业/进程调度:用于进程调度

    • 优缺点

      • 对各类型进程相对公平(FCFS的优点);
      • 每个新到达的进程都可以很快就得到响应(RR优点);
      • 短进程只用较少的时间就可完成(SPF优点);
      • 不必实现估程运时间(避用户作假);
      • 可灵活地调整对各类进程的偏好程度,比如CPU密集型进程、IO密集型进程

      拓展:可以将因I/O而阻塞的进程重新放回原队列,这样I/O型进程就可以保持较高优先级

    • 抢占式的算法;会导致饥饿

      在k级队列的进程运行过程中,若更上级的队列(1~k-1级)中进入了一个新进程,则由于新进程处于优先级更高的队列中,因此新进程会抢占处理机,原来运行的进程放回k级队列队尾。

    • img

    • img

先来先服务短作业优先高响应比优先时间片轮转多级反馈队列
能否是可抢占队列内算法不一定
能否是非抢占队列内算法不一定
优点公平,实现简单平均等待时间最少,效率最高兼顾长短作业兼顾长短作业兼顾长短作业, 有较好的的响应时间, 可行性强
缺点不利于短作业长作业会饥饿, 估计时间不易确定计算响应比的开销大平均等待时间较长, 上下文切换浪费时间
适用于作业调度, 批处理系统分时系统相当通用
默认决策模式非抢占非抢占非抢占抢占抢占
错题总结:

1.时间片轮转不能使系统高效,效率不会批处理,但是会让多个用户能够得到及时响应

2.处于临界区的进程在退出临界区前,可以被调度(中断或被抢占)

3.进程上下文不包括中断向量

4.上下文切换不包括主存和外村的数据交换

5.先来先服务利于cpu繁忙型作业,不利于IO繁忙型作业

6.多级反馈队列系统开销较大

7.降低进程优先级一般是进程执行完了以后进行降低

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/926586.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

论文概览 |《Urban Analytics and City Science》2023.05 Vol.50 Issue.4

本次给大家整理的是《Environment and Planning B: Urban Analytics and City Science》杂志2023年5月第50卷第4期的论文的题目和摘要,一共包括19篇SCI论文! 论文1 Data analytics and sustainable urban development in global cities 全球城市的数据…

【C++】优先队列(Priority Queue)全知道

亲爱的读者朋友们😃,此文开启知识盛宴与思想碰撞🎉。 快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。 目录 一、前言 二、优先队列(Priority Queue&#xff09…

服务熔断-熔断器设计

文章目录 服务为什么需要熔断熔断器设计思想熔断器代码实现 服务为什么需要熔断 对于服务端采用的保护机制为服务限流。 对于服务调用端是否存在保护机制? 假如要发布一个服务 B,而服务 B 又依赖服务 C,当一个服务 A 来调用服务 B 时&#x…

新能源汽车智慧充电桩管理方案:应用选型与充电协议应该怎么做?

新能源智慧充电桩平台采用虚拟化技术,使多种应用共享服务器、存储等硬件资源,可以帮助用户提供IT基础设施资源的利用效率,提升基础设施的应用和管理水平,实现计算资源的动态优化,使平台应用易维护、易扩充。 1、行业背…

SickOs: 1.1靶场学习小记

学习环境 kali攻击机:Get Kali | Kali Linux vulnhub靶场:https://download.vulnhub.com/sickos/sick0s1.1.7z 靶场描述: 这次夺旗赛清晰地模拟了在安全环境下如何对网络实施黑客策略从而入侵网络的过程。这个虚拟机与我在进攻性安全认证专…

[极客大挑战 2019]PHP--详细解析

信息搜集 想查看页面源代码,但是右键没有这个选项。 我们可以ctrlu或者在url前面加view-source:查看: 没什么有用信息。根据页面的hint,我们考虑扫一下目录看看能不能扫出一些文件. 扫到了备份文件www.zip,解压一下查看网站源代码…

python学习笔记 - python安装与环境变量配置

目录 前言1. 版本选择1.1 什么版本合适?1.2 版本越新越好吗?1.3 维护中的大版本里,选择最早的好吗?1.4 我的选择1.5 Python 发布周期1.6 Python维护中的版本及截止时间 2. 安装包下载2.1 官网地址2.2 下载安装包3. 环境安装3.1 新…

[Linux] 进程间通信——匿名管道命名管道

标题:[Linux] 进程间通信——匿名管道&&命名管道 水墨不写bug (图片来源于网络) 目录 一、进程间通信 二、进程间通信的方案——匿名管道 (1)匿名管道的原理 (2)使用匿名管道 三、进…

uniapp在App端定义全局弹窗,当打开关闭弹窗会触发onShow、onHide生命周期怎么解决?

在uniapp(App端)中实现自定义弹框,可以通过创建一个透明页面来实现。点击进入当前页面时,页面背景会变透明,用户可以根据自己的需求进行自定义,最终效果类似于弹框。 遇到问题:当打开弹窗(进入弹窗页面)就会触发当前页…

Linux之信号的产生,保存,捕捉

Linux之信号的产生,保存,捕捉处理 一.信号的概念1.1概念1.2分类 二.信号的产生2.1通过键盘产生的信号2.2系统调用接口产生的信号2.3硬件异常产生的信号2.4软件条件产生的信号 三.信号的保存四.信号的捕捉五.信号的其他杂碎知识5.1可重入函数5.2volatile关…

快排详解(4种写法:霍尔/挖坑法/双指针/非递归)

//本文所写快排的结果都是从小到大排序 思路 快排就是把数组的第一个值记为key,然后定义两个指针,一个叫begin,一个叫end. begin指针从数组的头部出发,寻找比key大的值;end指针从数组的尾部出发,寻找比key小的值; 然后交换begin和end的值 ......最后,begin和end相遇就停下…

Linux服务器安装mongodb

因为项目需要做评论功能,领导要求使用mongodb,所以趁机多学习一下。 在服务器我们使用docker安装mongodb 1、拉取mongodb镜像 docker pull mongo (默认拉取最新的镜像) 如果你想指定版本可以这样 docker pull mongo:4.4&#…

Bert+CRF的NER实战

CRF(条件随机场-Conditional Random Field) 原始本文:我在北京吃炸酱面 标注示例: 我O在O北B-PLA京I-PLA吃O炸B-FOOD酱I-FOOD面I-FOOD CRF: 目的:提出一些不可能出现的预测组合(例如I-PLA不能…

时序论文27|Fredformer:频域去偏差的时序预测Transformer模型

论文标题:Fredformer: Frequency Debiased Transformer for Time Series Forecasting 论文链接:https://arxiv.org/abs/2406.09009 代码链接:https://github.com/chenzRG/Fredformer 前言 这篇文章发表于KDD2024,作者的出发点…

带外配置IP

要想了解带内,私下我 管理IP:9.101.8.20 掩码:255.0.0.0 网关:9.101.0.254 1 首先自己电脑要修改ip 192.168.70.x 段 2 在cmd 去ping 192.168.70.125 必须通 3 去浏览器 登录192.168.70.125 4 更改ip 5 再次修改电脑IP 网关 掩码 7 检测…

大型复杂项目管理怎么结合传统与敏捷

大型复杂项目管理需要综合运用传统的瀑布模型与敏捷方法,两者各具优势,可以在不同的项目阶段和需求下发挥最大效能。首先,在项目的初期阶段,传统方法的详细规划和需求分析能够帮助确保项目方向正确、资源充足;敏捷方法…

Vue 2.0->3.0学习笔记(Vue 3 (四)- Composition API 的优势)

Vue 2.0->3.0学习笔记(Vue 3 (四)- Composition API 的优势) Composition API 的优势1. Options API 存在的问题2. Composition API 的优势 Composition API 的优势 1. Options API 存在的问题 笔记 使用传统OptionsA…

工程设计与总承包行业数字化转型:现状洞察、挑战突围与前景展望

一、现状洞察 (一)数字化技术应用初现成效 BIM 技术局部应用:部分企业在工程设计阶段利用 BIM 技术实现三维建模和设计可视化,施工前模拟环节可优化流程提高效率,但普及程度有待提高。项目管理软件逐步推广&#xff…

Spring Boot优雅读取配置信息 @EnableConfigurationProperties

很多时候我们需要将一些常用的配置信息比如oss等相关配置信息放到配置文件中。常用的有以下几种,相信大家比较熟悉: 1、Value(“${property}”) 读取比较简单的配置信息: 2、ConfigurationProperties(prefix “property”)读取配置信息并与 …

关于音频 DSP 的接口种类以及其应用场景介绍

在音频系统中,DSP(数字信号处理器)扮演着重要角色,通常会通过不同的接口与音频系统中的其他组件(如功放、扬声器、音频源等)进行连接。以汽车应用场景为例,以下是一些常见的接口类型分类及其介绍…