BWO-CNN-BiGRU-Attention白鲸优化算法优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比

BWO-CNN-BiGRU-Attention白鲸优化算法优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比

目录

    • BWO-CNN-BiGRU-Attention白鲸优化算法优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现BWO-CNN-BiGRU-Attention白鲸优化算法优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比,含优化前后对比,要求Matlab2023版以上;
2.单变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

模型描述

BWO-CNN-BiGRU-Attention白鲸优化算法优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比,含优化前后对比。

下面是这个模型的主要组成部分和工作流程的简要说明:

数据预处理:首先,对时间序列数据进行预处理。划分训练集和测试集等。

卷积神经网络(CNN):通过使用CNN,模型可以自动学习输入数据的空间特征。CNN通常由多个卷积层和池化层组成,可以有效地提取输入数据的局部特征。

双向门控循环单元(BiGRU):双向门控循环单元是一种适用于序列数据建模的循环神经网络(RNN)变体。双向门控循环单元具有记忆单元和门控机制,可以捕捉输入数据的长期依赖关系。通过双向门控循环单元层,模型可以学习序列数据的时间依赖性。

多头注意力机制(Mutilhead Attention):多头注意力机制允许模型同时关注输入序列的不同部分。它通过将序列数据映射到多个子空间,并计算每个子空间的注意力权重来实现这一点。这样可以提高模型对不同时间步和特征之间关系的建模能力。

白鲸优化算法优化:白鲸优化算法是一种基于群体智能的优化算法,可以用于调整模型的超参数和优化训练过程。通过应用北方苍鹰算法算法,可以提高模型的性能和收敛速度。

融合和预测:最后,通过融合CNN、BiGRU和多头注意力机制的输出,模型可以生成对未来时间步的多变量时间序列的预测。

需要注意的是,这是一种概念性的模型描述,具体实现的细节可能因应用场景和数据特征而有所不同。模型的性能和效果还需要根据具体问题进行评估和调优。

程序设计

  • 完整源码和数据获取方式BWO-CNN-BiGRU-Attention白鲸优化算法优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比。



layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   


lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : pop
    
    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );  
    fit( i ) = fobj( x( i, : ) ) ;                       
end

pFit = fit;                       
pX = x; 
 XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin

 % Start updating the solutions.
for t = 1 : M    
       
        [fmax,B]=max(fit);
        worse= x(B,:);   
       r2=rand(1);
 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i = 1 : pNum    
        if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else
            
           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            x(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   
       
       x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

        end
      
        x(  i , : ) = Bounds( x(i , : ), lb, ub );    
        fit(  i  ) = fobj( x(i , : ) );
    end 
 [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness value
  bestXX = x( bestII, : );             % bestXX denotes the current optimum position 

 R=1-t/M;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds( Xnew1, lb, ub );
   Xnew2 = Bounds( Xnew2, lb, ub );
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     Xnew11 = bestX.*(1-R); 
     Xnew22 =bestX.*(1+R);                     %%% Equation (5)
   Xnew11= Bounds( Xnew11, lb, ub );
    Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    for i = ( pNum + 1 ) :12                  % Equation (4)
     x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
   x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );
  fit(i ) = fobj(  x(i,:) ) ;
   end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/926377.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Matlab Simulink HDL Coder FPGA开发初体验—计数器

目录 一、Simulink设计及仿真二、Verilog HDL代码转换1、参数配置2、HDL代码生成 三、ModelSim仿真分析1、使用自己编写的Testbench文件进行仿真2、使用HDL Coder生成的Testbench文件进行仿真 前言 Simulink HDL Coder‌是一款将Simulink和Stateflow模型转化为可综合的Verilog和…

RAG数据拆分之PDF

引言RAG数据简介PDF解析方法及工具代码实现总结 二、正文内容 引言 本文将介绍如何将RAG数据拆分至PDF格式&#xff0c;并探讨PDF解析的方法和工具&#xff0c;最后提供代码示例。 RAG数据简介 RAG&#xff08;关系型属性图&#xff09;是一种用于表示实体及其关系的图数据…

Postman设置接口关联,实现参数化

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 postman设置接口关联 在实际的接口测试中&#xff0c;后一个接口经常需要用到前一个接口返回的结果&#xff0c; 从而让后一个接口能正常执行&#xff0c;这…

不玩PS抠图了,改玩Python抠图

网上找了两个苏轼的印章图片&#xff1a; 把这两个印章抠出来的话&#xff0c;对于不少PS高手来说是相当容易&#xff0c;但是要去掉其中的水印&#xff0c;可能要用仿制图章慢慢描绘&#xff0c;图章的边缘也要慢慢勾画或者用通道抠图之类来处理&#xff0c;而且印章的红色也不…

构造函数与析构函数错题汇总

构造函数不能定义返回类型&#xff0c;也没有返回类型。 堆、栈、静态存储区。栈上的对象main函数结束就释放&#xff0c;堆上的需要手动释放&#xff0c;静态存储区的在所在作用域的程序结束时释放。这里static在main函数内&#xff0c;是局部变量&#xff0c;所以作用域为…

模拟器快速上手,助力HarmonyOS应用/服务高效开发

文章目录 1 创建模拟器1&#xff09;打开设备管理界面2&#xff09;设置本地模拟器实例存储路径3&#xff09;创建一个模拟器&#xff08;1&#xff09;选择模拟器设备&#xff08;2&#xff09;创建模拟器&#xff08;3&#xff09;启动模拟器&#xff08;4&#xff09;关闭模…

如何估算自然对流传热系数

介绍 一般来说&#xff0c;对流可以定义为通过加热流体&#xff08;例如空气或水&#xff09;的运动来传递热量的过程。 自然对流&#xff08;对流的一种特定类型&#xff09;可以定义为流体在重力作用下由于较热因此密度较小的物质上升&#xff0c;而较冷且密度较大的物质下…

【Git 工具】用 IntelliJ IDEA 玩转 Git 分支与版本管理

文章目录 一、使用 IDEA 配置和操作 Git1.1 查看 Idea 中的 Git 配置1.2 克隆 Github 项目到本地 二、版本管理2.1 提交并推送修改2.2 拉取远程仓库2.3 查看历史2.4 版本回退 三、分支管理3.1 新建分支3.2 切换分支3.2 合并分支3.4 Cherry-Pick 参考资料 一、使用 IDEA 配置和操…

本地学习axios源码-如何在本地打印axios里面的信息

1. 下载axios到本地 git clone https://github.com/axios/axios.git 2. 下载react项目, 用vite按照提示命令配置一下vite react ts项目 npm create vite my-vue-app --template react 3. 下载koa, 搭建一个axios请求地址的服务端 a.初始化package.json mkdir koa-server…

【深度学习基础】预备知识 | 微积分

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上&#xff0c;结合当代大数据和大算力的发展而发展出来的。深度学习最重…

微信小程序构建npm失败,没有找到可以构建的npm包

方法&#xff1a;打开终端输入 npm init -y npm install 或 yarn install我用 npm install 下载后并没有出现node_modules, 又用 yarn install 下载&#xff0c;成功了 下载好后&#xff0c;在project.config.json文件添加 "showShadowRootInWxmlPanel": true, …

Ubuntu 24.04使用docker安装Node-Red

Node-Red是开源是可视化的流计算软件&#xff0c;在Ubuntu 24.04版本下&#xff0c;很容易通过docker进行安装。 本人环境信息如下&#xff1a; Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-45-generic x86_64)ubuntupascalming-ubuntu:~$ docker -v Docker version 24.0…

11.26深度学习_神经网络-数据处理

一、深度学习概述 1. 什么是深度学习 ​ 人工智能、机器学习和深度学习之间的关系&#xff1a; ​ 机器学习是实现人工智能的一种途径&#xff0c;深度学习是机器学习的子集&#xff0c;区别如下&#xff1a; ​ 传统机器学习算法依赖人工设计特征、提取特征&#xff0c;而深…

Kotlin的object修饰符定义类似Java的静态类/静态方法

Kotlin的object修饰符定义类似Java的静态类/静态方法 //类似Java的static类 object StaticCls {//类似Java静态变量private var num 0//类似Java的静态方法fun updateVal(n: Int) {num n}fun getVal(): Int {return num} }class MyTest() {fun setVal() {StaticCls.updateVal…

接口隔离原则理解和实践

在软件开发中&#xff0c;设计原则是指导我们编写高质量代码的重要准则。接口隔离原则&#xff08;Interface Segregation Principle, ISP&#xff09;是面向对象设计原则中的一条重要原则。ISP原则指出&#xff0c;客户端不应该依赖它不需要的接口&#xff0c;类间的依赖关系应…

SQL进阶——C++与SQL进阶实践

在C开发中&#xff0c;SQL数据库的操作是开发者常见的任务之一。虽然前面我们已经介绍了如何在C中通过数据库连接执行基本的SQL查询&#xff0c;但在实际项目中&#xff0c;我们通常需要更加复杂和高效的数据库操作。存储过程与函数的调用、复杂SQL查询的编写、以及动态构造SQL…

JVM 性能调优 -- JVM常用调优工具【jps、jstack、jmap、jstats 命令】

前言&#xff1a; 前面我们分析怎么去预估系统资源&#xff0c;怎么去设置 JVM 参数以及怎么去看 GC 日志&#xff0c;本篇我们分享一些常用的 JVM 调优工具&#xff0c;我们在进行 JVM 调优的时候&#xff0c;通常需要借助一些工具来对系统的进行相关分析&#xff0c;从而确定…

Mongo操作手册

Mongo数据类型 在Mongodb中&#xff0c;可以使用数字代码和别名作为过滤条件查询文档。在聚合操作中&#xff0c;可以获取字段类型的别名。或者根据返回的字段类型实现不同的逻辑。 //使用字符串"array"和数字类型4查询字段类型是数组的数据 db.collection.find({&l…

HBU深度学习作业9

1. 实现SRN &#xff08;1&#xff09;使用Numpy实现SRN import numpy as npinputs np.array([[1., 1.],[1., 1.],[2., 2.]]) # 初始化输入序列 print(inputs is , inputs)state_t np.zeros(2, ) # 初始化存储器 print(state_t is , state_t)w1, w2, w3, w4, w5, w6, w7, …

智能堆叠,集群和IRF

堆叠和IRF其实可以近似看成同一种技术&#xff0c;只是华三叫IRF&#xff0c;华为叫智能堆叠 智能堆叠&#xff08;iStack&#xff09;&#xff1a;支持堆叠特性的交换机通过堆叠线缆连接在一起&#xff0c;从逻辑上变成一台交换设备&#xff0c;作为一个整体参与数据转发&…