【机器学习】机器学习的基本分类-监督学习-逻辑回归-Sigmoid 函数

Sigmoid 函数是一种常用的激活函数,尤其在神经网络和逻辑回归中扮演重要角色。它将输入的实数映射到区间 (0, 1),形状类似于字母 "S"。


1. 定义与公式

Sigmoid 函数的公式为:

\sigma(x) = \frac{1}{1 + e^{-x}}

特点

  1. 输出范围:(0, 1),适合用于概率预测。
  2. 单调性:是一个单调递增函数。
  3. 对称性:以 x = 0 为中心,对称于 y = 0.5。

2.Sigmoid 函数的推导过程

2-1. 目标与需求

我们希望构造一个函数 f(x) 满足以下性质:

  1. 输出范围:f(x) 的值限定在区间 (0, 1),便于解释为概率。
  2. 平滑性:函数连续且可导,以便使用梯度下降进行优化。
  3. 单调性:函数值随着输入 x 的增大而增大。
  4. 对称性:以 x = 0 为对称中心,输入为 0 时,输出为 0.5,表示不偏不倚的概率。

2-2. 构造 Sigmoid 函数

为了满足这些性质,可以使用指数函数 e^x 的形式,因为指数函数本身是平滑的、单调递增的。

构造输出范围

首先,为了限制输出范围在 (0, 1),我们构造如下函数:

f(x) = \frac{1}{1 + g(x)}

其中 g(x) > 0 保证分母大于 1,因此 f(x) 始终在 (0, 1)。

选择 g(x) = e^{-x},得到:

f(x) = \frac{1}{1 + e^{-x}}

性质验证

  1. 输出范围

    f(x) = \frac{1}{1 + e^{-x}}
    • x \to \inftye^{-x} \to 0f(x) \to 1
    • x \to -\inftye^{-x} \to \inftyf(x) \to 0
  2. 单调性: 指数函数 e^{-x} 单调递减,分母 1 + e^{-x} 随 x 增大而变大,分数值变小,因此 f(x) 单调递增。

  3. 对称性: 令 x = 0,

    f(0) = \frac{1}{1 + e^0} = \frac{1}{2}

    满足 f(0) = 0.5,以 x = 0 为中心对称。


2-3. 导数推导

公式

导数计算如下:

f(x) = \frac{1}{1 + e^{-x}}

对 f(x) 求导:

  1. 分母求导法则:

    \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{u} = -\frac{1}{u^2} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}
  2. 应用到 f(x): 设 u = 1 + e^{-x},则:

    f'(x) = -\frac{1}{(1 + e^{-x})^2} \cdot (-e^{-x}) = \frac{e^{-x}}{(1 + e^{-x})^2}
  3. 进一步化简:

    f'(x) = \frac{1}{1 + e^{-x}} \cdot \left(1 - \frac{1}{1 + e^{-x}}\right)

    \sigma(x) = \frac{1}{1 + e^{-x}},得:

    f'(x) = \sigma(x) \cdot (1 - \sigma(x))

2-4. 推导的直观解释

概率建模视角

Sigmoid 函数可以看作将线性模型的输出 z = w^T x + b 转换为概率值的过程:

P(y=1|x) = \frac{1}{1 + e^{-z}}

z \to \infty,预测概率接近 1;当 z \to -\infty,预测概率接近 0。

对称性与平滑性

  • 对称性来源于指数函数的性质:负指数 e^{-x} 的曲线是正指数 e^{x} 的镜像。
  • 平滑性来源于指数函数的连续和可导性。

3. Sigmoid 的性质

导数

Sigmoid 的导数具有简洁的形式:

\sigma'(x) = \sigma(x) \cdot (1 - \sigma(x))

这使得计算变得高效。

梯度消失问题

  • 当 x 的绝对值较大时,σ(x) 的值接近 0 或 1,导数接近于 0。这会导致梯度更新过慢的问题,特别是在深层神经网络中。

4. Sigmoid 的用途

  1. 逻辑回归

    • 用于将线性回归的结果转化为二分类概率。
    P(y=1|x) = \frac{1}{1 + e^{-(w^T x + b)}}
  2. 神经网络

    • 作为激活函数,尤其是输出层,用于预测概率值。
  3. 概率建模

    • 用于模型的概率预测或生成。

5. 缺点

  1. 梯度消失
    • 绝对值较大的输入导致梯度趋于 0,影响深层网络的训练。
  2. 非零均值
    • Sigmoid 输出的均值不为零,可能导致下一层神经元的输入分布偏移。

6. 代码实现

以下是 Sigmoid 函数的实现及其应用示例。

Sigmoid 函数

import numpy as np
import matplotlib.pyplot as plt

# Sigmoid 函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# Sigmoid 导数
def sigmoid_derivative(x):
    s = sigmoid(x)
    return s * (1 - s)

# 绘图
x = np.linspace(-10, 10, 100)
y = sigmoid(x)
y_prime = sigmoid_derivative(x)

plt.plot(x, y, label='Sigmoid Function')
plt.plot(x, y_prime, label='Sigmoid Derivative', linestyle='--')
plt.title("Sigmoid and Its Derivative")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.grid()
plt.show()

逻辑回归示例

# 导入必要的库
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成一个模拟的二分类数据集
# 这里详细说明了数据集的特性:样本数、特征数、类别数、信息特征数、冗余特征数、重复特征数和随机种子
X, y = make_classification(n_samples=100, n_features=4, n_classes=2, n_informative=2, n_redundant=1, n_repeated=0,
                           random_state=0)

# 将数据集分为训练集和测试集,测试集大小为30%,并设置了随机种子以保证结果的可重复性
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化逻辑回归模型
model = LogisticRegression()
# 使用训练集数据训练模型
model.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)
# 打印模型的准确率
print("Accuracy:", accuracy_score(y_test, y_pred))

输出结果

Accuracy: 0.9

7. Sigmoid 的替代品

为了克服 Sigmoid 的缺点,神经网络中常用以下替代激活函数:

  1. ReLU(Rectified Linear Unit): f(x) = max(0, x)
  2. Leaky ReLUf(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha x & \text{if } x \leq 0 \end{cases}
  3. Tanhf(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} 输出范围为 (-1, 1)。

Sigmoid 函数虽然简单,但由于其梯度问题和计算开销,在深度学习中逐渐被其他激活函数所取代。不过,它在概率建模等领域仍然非常实用!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/926166.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

点云处理中obb算法原理和法向量求解方法

主要数学原理PCA PCA(Principal Component Analysis,主成分分析)是数据分析中的一种重要技术,通过它可以将高维数据投影到低维空间,找到数据的主要结构。在点云分析中,PCA 可以帮助我们提取点云数据中的主…

四:工具、环境准备-compute node

一:工具、环境准备-controller node 二:OpenStack环境准备-controller node 三:安装服务-controller node 四:工具、环境准备-compute node 五:OpenStack环境准备-compute node 六:安装服务-compute node 七…

力扣1382:将二叉搜索树便平衡

给你一棵二叉搜索树,请你返回一棵 平衡后 的二叉搜索树,新生成的树应该与原来的树有着相同的节点值。如果有多种构造方法,请你返回任意一种。 如果一棵二叉搜索树中,每个节点的两棵子树高度差不超过 1 ,我们就称这棵二…

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比 目录 NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介…

微信小程序Webview与H5通信

背景 近期有个微信小程序需要用到web-view嵌套H5的场景,该应用场景需要小程序中频繁传递数据到H5进行渲染,且需要保证页面不刷新。 由于微信小程序与H5之间的通信限制比较大,显然无法满足于我的业务场景 探索 由于微信小程序与webview的环境是…

18. C++STL 4(vector的使用, 空间增长, 迭代器失效详解)

⭐本篇重点:vector容器的使用详解 ⭐本篇代码:c学习/08.vector_test 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) 目录 一. vector的介绍 二. vector的使用 2.1 vector的定义 * 2.2 vector的迭代器和遍历 a operator[]访问 b vect…

NAT拓展

NAT ALG(NAT应用级网) 为某些应用层协议,因为其报文内容可能携带IP相关信息,而普通NAT转化无法将这些IP转化,从而导致协议无法正常运行 例如FTP,DHCP,RSTP,ICMP,IPSEC…

私有库gitea安装

一 gitea是什么 Gitea是一款自助Git服务,简单来说,就是可以一个私有的github。 搭建很容易。 Gitea依赖于Git。 类似Gitea的还有GitHub、Gitee、GitLab等。 以下是安装步骤。 二 安装sqilite 参考: 在windows上安装sqlite 三 安装git…

从零开始理解JVM:对象的生命周期之对象销毁(垃圾回收)

一、JVM参数 在学垃圾回收器之前,我们先要知道,jvm参数是怎么回事。因为配置各种回收器,必须对应各种参数设置。 标准参数(-) 所有的JVM实现都必须实现这些参数的功能,而且向后兼容 -help-version 非标准参…

C# 数据类型详解:掌握数据类型及操作为高效编码奠定基础

本文将带你深入了解C#中各种数据类型的特点、用途和最佳实践,让你不仅能熟练运用基本类型,还能掌握如何在实际项目中做出最合适的选择。 目录 C#基本语法 C#数据类型 C#类型转换 C#变量常量 C#基本语法 在学习C#之前我们要先知道C#的基础构建是由哪些…

后端-mybatis的多对多

首先准备两张表学生表和课程表,一个学生可以选多个课程,一门课程也可以被多个学生选择。 再建一个学生表和课程表的中间表,包含学生id和课程id。 我们拿查询所有学生 和他们所选的课程为例,写多对多(其实就是一对多&a…

05《存储器层次结构与接口》计算机组成与体系结构 系列课

目录 存储器层次结构概述 层次结构的定义 存储器的排名 存储器接口 处理器与存储器的速度匹配 存储器接口的定义 存储器访问命中率 两种接口 第1种方式:并行 命中率的计算 存储器访问时间 第2种方式:逐级 结语 大家好,欢迎回来。…

软件测试——性能测试工具JMeter

1.JMeter介绍 Apache JMeter是一款纯java编写负载功能测试和性能测试开源工具软件。JMeter小巧轻便且免费,逐渐成为了主流的性能测试工具,是每个测试人员都必须要掌握的工具之一。 环境要求: ​ 需要Java8或者更高的版本。 1.1 JMeter的下…

ARP表、MAC表、路由表的区别和各自作用

文章目录 ARP表、MAC表、路由表的区别和各自作用同一网络内:ARP表request - 请求reply - 响应 MAC地址在同一网络内,交换机如何工作? 不同网络路由表不同网络通信流程PC1到路由器路由器到PC2 简短总结 ARP表、MAC表、路由表的区别和各自作用 同一网络内: ARP作用: 让发送方知…

【Azure Cache for Redis】Redis的导出页面无法配置Storage SAS时通过az cli来完成

问题描述 在Azure Redis的导出页面,突然不能配置Storage Account的SAS作为授权方式。 image.png 那么是否可以通过AZ CLI或者是Powershell来实现SAS的配置呢? 问题解答 可以的。使用 az redis export 可以实现 az redis export --container --prefix[--a…

【AI系统】昇腾 AI 架构介绍

昇腾 AI 架构介绍 昇腾计算的基础软硬件是产业的核⼼,也是 AI 计算能⼒的来源。华为,作为昇腾计算产业⽣态的⼀员,是基础软硬件系统的核⼼贡献者。昇腾计算软硬件包括硬件系统、基础软件和应⽤使能等。 而本书介绍的 AI 系统整体架构&#…

transformers microsoft--table-transformer 表格识别

一、安装包 pip install transformers pip install torch pip install SentencePiecepip install timm pip install accelerate pip install pytesseract pillow pandas pip install tesseract 下载模型: https://huggingface.co/microsoft/table-transformer-s…

给UE5优化一丢丢编辑器性能

背后的原理 先看FActorIterator的定义 /*** Actor iterator* Note that when Playing In Editor, this will find actors only in CurrentWorld*/ class FActorIterator : public TActorIteratorBase<FActorIterator> {//..... }找到基类TActorIteratorBase /*** Temp…

Q3营收同比增22.4%,即时配送高质量增长的美团未来何在?

首先&#xff0c;美团核心本地商业的稳健发展为其未来奠定了坚实的基础。核心本地商业营收达694亿元&#xff0c;同比增长20.2%&#xff0c;这显示出美团在本地生活服务领域的强大竞争力。随着中国经济的高质量发展和消费信心的提升&#xff0c;美团的年交易用户数、年活跃商户…

基于R语言森林生态系统结构、功能与稳定性分析与可视化

在生态学研究中&#xff0c;森林生态系统的结构、功能与稳定性是核心研究内容之一。这些方面不仅关系到森林动态变化和物种多样性&#xff0c;还直接影响森林提供的生态服务功能及其应对环境变化的能力。森林生态系统的结构主要包括物种组成、树种多样性、树木的空间分布与密度…