分布式协同 - 分布式锁一二事儿

文章目录

  • 导图
  • Pre
  • 概述
  • 概述
    • 1. 分布式互斥和临界资源的协调
    • 2. 分布式锁的基本原理
    • 3. 分布式锁的实现方式
      • a. 基于数据库实现的分布式锁
      • b. 基于Redis实现的分布式锁
      • c. 基于Zookeeper实现的分布式锁
    • 4. 高并发场景下的分布式锁优化
        • a. 分段锁(Sharded Locks)
        • b. 锁竞争优化
        • c. 锁超时和自动解锁
        • d. 异步处理
    • 5. 分布式锁的高可用性保障
  • 分布式锁的由来和定义
    • 进程内对临界资源的竞态操作
    • 分布式锁示意图
  • 通过 Redis 缓存实现分布式锁
  • 通过 ZooKeeper 实现分布式锁
  • 分布式分段加锁

在这里插入图片描述

导图

在这里插入图片描述


Pre

分布式协同 - 分布式系统的特性与互斥问题

深入理解分布式技术 - 分布式锁的应用场景和主流方案

深入理解分布式技术 - Redis 分布式锁解决方案

Redis进阶- Redisson分布式锁实现原理及源码解析

Redis进阶-细说分布式锁

Apache ZooKeeper - 使用ZK实现分布式锁(非公平锁/公平锁/共享锁 )


概述

概述

1. 分布式互斥和临界资源的协调

在分布式系统中,由于多个节点(进程)并发执行,可能会访问共享的临界资源。为了保证资源的正确性和一致性,必须保证同一时刻只有一个节点能够访问该资源,这就是分布式互斥的需求。没有这种互斥机制时,多个节点可能会同时修改共享数据,导致数据不一致或不正确。

例如,在高并发的秒杀系统中,多个订单服务节点可能会同时扣减库存,如果没有互斥控制,可能导致库存超卖的问题。

2. 分布式锁的基本原理

分布式锁是一种确保在分布式环境中,多个节点对临界资源进行顺序访问的机制。其基本原理是:每次只有一个节点能够获得锁并访问资源,其他节点需要等待锁释放。锁通常有两种状态:

  • 持有锁的节点:该节点正在访问临界资源。
  • 等待锁的节点:该节点在等待资源访问权限。

当一个节点获取锁时,其他节点必须等待,直到该节点释放锁才能继续访问资源。

3. 分布式锁的实现方式

分布式锁的实现方式有多种,常见的方式包括:

a. 基于数据库实现的分布式锁

数据库可以通过表记录来实现分布式锁。例如,可以在数据库中创建一个“锁”表,只有获取到该表的某一行记录的节点才能访问资源。为了保证锁的唯一性,通常会使用数据库的事务和悲观锁机制。

优点:

  • 实现简单,适用于使用数据库的系统。

缺点:

  • 性能较低,锁竞争严重时会影响数据库的读写性能。

b. 基于Redis实现的分布式锁

Redis提供了丰富的锁机制,最常用的是通过SETNX命令(“SET if Not eXists”)来实现分布式锁。SETNX命令可以确保只有一个节点能够成功设置一个键,如果该键已经存在,则表示锁已被其他节点持有。

Redis分布式锁的常见实现包括:

  • 使用SETNX命令设置锁。
  • 设置超时,确保即使进程崩溃或网络断开,锁也能被释放,避免死锁。
  • 使用RedLock算法,确保在多个Redis实例上使用锁,提高系统的可用性和容错性。

优点:

  • 性能高,支持高并发。
  • 支持分布式环境下的锁管理。

缺点:

  • 需要确保锁的超时和重试机制,避免死锁。

c. 基于Zookeeper实现的分布式锁

Zookeeper提供了原生的分布式协调服务,能够很方便地实现分布式锁。通过在Zookeeper中创建临时节点,每个进程尝试创建一个节点作为锁的标识,只有一个进程能够成功创建临时节点并获得锁。

Zookeeper的分布式锁通常涉及以下步骤:

  • 创建一个顺序临时节点。
  • 通过Zookeeper提供的Watcher机制监控其他节点的创建,保证获取锁的顺序。
  • 在完成任务后删除锁节点。

优点:

  • 强一致性,适合需要强一致性的分布式系统。

缺点:

  • 性能相对较低,适合对一致性要求较高的场景。

4. 高并发场景下的分布式锁优化

在高并发、大流量的场景下(如秒杀系统),多个请求可能会同时竞争资源,造成系统性能瓶颈。为了应对这些挑战,可以通过以下方式优化分布式锁的性能:

a. 分段锁(Sharded Locks)

为了提高并发性能,可以对资源进行分段,使用多个锁来分担压力。例如,将库存分为多个段,每个段使用独立的锁,这样多个请求就可以并行地访问不同段的库存,减少锁竞争。

b. 锁竞争优化

优化锁的获取和释放机制,减少锁竞争的时间。可以通过乐观锁和**CAS(Compare And Swap)**等技术减少锁的争用。

c. 锁超时和自动解锁

为了避免死锁,应该为锁设置超时时间,确保即使持锁进程崩溃,锁也能被及时释放。

d. 异步处理

对于不需要立即执行的任务,可以考虑异步处理,通过消息队列等机制将任务延迟执行,从而减少对锁的依赖。

5. 分布式锁的高可用性保障

在分布式锁的实现过程中,要确保协调者(如Redis、Zookeeper)具有高可用性。在高并发的环境中,单点故障可能会导致锁服务不可用,从而影响系统的稳定性。

为了提高可用性,可以:

  • 对Redis使用集群模式,确保高可用性。
  • 使用Zookeeper集群,提高容错性。
  • 采用RedLock等算法,确保在多个节点上都能获得锁,从而避免单点故障。

分布式锁的由来和定义

通常来讲,在消费者下订单时也会对库存进行扣减,此时订单服务会更新库存变量,其实就是将其值减 1。如果有两个用户同时对同一商品下单,就会造成对同一商品库存进行扣减的情况。我们将库存称作临界资源,扣减库存的动作称为竞态。切换到在进程内,竞态可以理解为两个线程(两个用户请求)争夺临界资源,解决办法是在这个资源上加一把锁。

进程内对临界资源的竞态操作

如下所示,线程 B 先到达,于是让其持有这把锁,并访问临界资源,之后线程 A 到达时由于没有锁,就进入等待队列,等线程 B 访问完毕并释放锁以后,线程 A 持有锁,可以访问临界资源

在这里插入图片描述

分布式锁示意图

为了面对高并发的下单请求,对订单服务做了水平扩展,因此订单服务通常是分散部署的。原来是进程内的多线程对临界资源产生的竞态,现在变成了分布式应用系统中的多个服务(进程)对临界资源的竞态对订单服务进行了水平扩展,将其从原来的一个扩展为两个,分别是订单服务 A 和 B,这两个服务可能会同时扣减库存。

由于是不同的服务或者进程,它们不知道对方的存在,因此共同访问的临界资源应该独立于服务,保存在一个公共的存储区域中,让水平扩展的订单服务都可以访问到。另外,可以通过锁机制,保证多服务并发请求时的竞态不会造成超卖情况,这和解决进程内竞态的方式相同。通过给临界资源加上一把锁,可以让并发操作变成串行的方式。这个锁就是分布式锁,其实现方式多种多样,比如通过数据库、Redis 缓存、ZooKeeper 实现
在这里插入图片描述

用数据库实现分布式锁比较简单,就是创建一张锁表。要锁住临界资源并对其访问时,在锁表中增加一条记录即可;删除某条记录就可释放相应的临界资源。数据库对临界资源做了唯一性约束,如果有访问临界资源的请求同时提交到数据库,数据库会保证只有一个请求能够得到锁,然后只有得到锁的这个请求才可以访问临界资源。

由于此类操作属于数据库 IO 操作,效率不高,而且频繁操作会增大数据库的开销,因此这种方式在高并发、对性能要求较高的场景中使用得并不多,这里不做详细介绍。


通过 Redis 缓存实现分布式锁

库存作为临界资源会遭遇高并发的请求访问,为了提高效率,可以将库存信息放到缓存中。以流行的 Redis 为例,用其存放库存信息,当多个进程同时请求访问库存时会出现资源争夺现象,也就是分布式程序争夺唯一资源。为了解决这个问题,需要实现分布式锁

在这里插入图片描述

假设有多个扣减服务用于响应用户的下单请求,这些服务接收到请求后会去访问 Redis 缓存中存放的库存信息,每接收一次用户请求,就将 Redis 中存放的库存量减去 1。

一个进程持有锁后,就可以访问 Redis 中的库存资源,且在其访问期间其他进程是不能访问的。如果该进程长期没有释放锁,就会造成其他进程饥饿,因此需要考虑锁的过期时间,设置超时时间。


通过 ZooKeeper 实现分布式锁

使用 Redis 缓存实现分布式锁,使同时访问临界资源的进程由并行执行变为串行执行。按照同样的思路,ZooKeeper 中的 DataNode 也可以保证两个进程的访问顺序是串行的,两个库存扣减进程会在 ZooKeeper 上建立顺序的 DataNode,DataNode 的顺序就是进程访问临界资源的顺序,这样避免了多个进程同时访问临界资源,起到了锁的作用。

在 ZooKeeper 中建立一个 Locker 的 DataNode 节点,在此节点下面建立子 DataNode 来保证先后顺序。即便是两个进程同时申请新建节点,也会按照先后顺序建立两个节点
在这里插入图片描述

整个过程具体如下。

  • (1) 当库存服务 A 想要访问库存时,需要先申请锁,于是在 ZooKeeper 的 Locker 节点下面新建一个 DataNode1 节点,表明可以扣减库存。
  • (2) 库存服务 B 在服务 A 后面申请库存的访问权限,由于申请锁操作排在服务 A 后面,因此节点会按照次序建立在 DataNode1 下面,为 DataNode2。
  • (3) 库存服务 A 在申请锁成功以后访问库存资源,并完成扣减。这段时间内库存服务 B 一直等待,直到库存服务 A 扣减完毕,ZooKeeper 中 Locker 下面的 DataNode1 节点被删除。
  • (4) DataNode1 被删除后,DataNode2 作为序号最靠前的节点,对应的库存服务 B 能够访问并扣减库存

可知: ZooKeeper 实现分布式锁的基本原理是按照顺序建立 DataNode 节点


分布式分段加锁

通过 Redis 缓存和 ZooKeeper 实现分布式锁依据的都是把并行执行转换成串行执行的思路。现在假设处理一次下单扣减等逻辑需要 20ms,那么同时有 500 个扣减请求串行执行的话,就需要 20ms×500 =10 000ms,也就是 10 s。如果并发数量再高一点,即使可以将订单服务水平扩展成很多个,使用队列做缓冲,也需要很久才能完成。

实际上,有我们可以将原理中的临界资源——库存由一个分成多个,然后将分得的库存段放到临界资源中,例如库存量为 500,将其分成 50 份,每份放 10 个库存,并从 1 到 50 标号,每个号码中就放 10 个库存。当高并发来临时,订单服务按序或者随机请求 1 到 10 号库存段,如果请求的库存段没有被锁,就获取锁并进行扣减操作;如果请求的库存段被其他请求锁住了,就换一个库存段进行扣减。这样在无形中提高了并发量,可以用在秒杀系统中

在这里插入图片描述

扣减库存请求 1 获取了库存段 1 的资源后,扣减库存请求 2 再获取库存段 1 时会发现这部分库存资源已经被锁住了,于是找库存段 2 获取资源,发现这部分库存资源并没有被锁住,于是执行扣减操作。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/926061.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CSP-J初赛不会备考咋办?

以下备考攻略仅供参考,如需资料请私信作者!求支持! 目录 一、编程语言基础 1.语法知识 -变量与数据类型 -运算符 -控制结构 -函数 2.标准库的使用 -输入输出流 -字符串处理 -容器类(可选) 二、算法与数据结构 1.基…

使用easyexcel导出复杂模板,同时使用bean,map,list填充

背景 在使用easyexcel导出时,如果遇到一个模板中同时存在 一部分是实体类中的字段,另外部分是列表的字段,需要特殊处理一下,比如下面的模板: 这里面 user, addr 是实体类(或者map&#xff09…

Monitor 显示器软件开发设计入门二

基础篇--显示驱动方案输出接口介绍 写在前面:首先申明,这篇文章是写给那些初入显示器软件行业的入门者,或是对显示器没有基本知识的小白人员。如您是行业大咖大神,可以绕行,可看后期进阶文章。 上篇介绍了输入接口及相…

.net XSSFWorkbook 读取/写入 指定单元格的内容

方法如下&#xff1a; using NPOI.SS.Formula.Functions;using NPOI.SS.UserModel;using OfficeOpenXml.FormulaParsing.Excel.Functions.DateTime;using OfficeOpenXml.FormulaParsing.Excel.Functions.Numeric;/// <summary>/// 读取Excel指定单元格内容/// </summa…

力扣--LCR 152.验证二叉搜索树后序遍历

请实现一个函数来判断整数数组 postorder 是否为二叉搜索树的后序遍历结果。 提示&#xff1a; 数组长度 < 1000 postorder 中无重复数字代码 class Solution { public boolean verifyPostorder(int[] postorder) { if(postorder null){ return true; } return f(postor…

【electron-vite】搭建electron+vue3框架基础

一、拉取项目 electron-vite 中文文档地址&#xff1a; https://cn-evite.netlify.app/guide/ 官网网址&#xff1a;https://evite.netlify.app/ 版本 vue版本&#xff1a;vue3 构建工具&#xff1a;vite 框架类型&#xff1a;Electron JS语法&#xff1a;TypeScript &…

了解HTTPS以及CA在其中的作用

在这个信息爆炸的时代&#xff0c;每一次指尖轻触屏幕&#xff0c;都是一次数据的旅行。但您是否真正了解&#xff0c;这些数据在通往目的地的旅途中&#xff0c;是如何被保护的呢&#xff1f; HTTPS&#xff08;HyperText Transfer Protocol Secure&#xff09;是一种安全的网…

Spring Boot日志总结

文章目录 1.我们的日志2.日志的作用3.使用日志对象打印日志4.日志框架介绍5.深入理解门面模式(外观模式)6.日志格式的说明7.日志级别7.1日志级别分类7.2配置文件添加日志级别 8.日志持久化9.日志文件的拆分9.1官方文档9.2IDEA演示文件分割 10.日志格式的配置11.更简单的日志输入…

Transformer 模型:序列数据处理的自注意力神经网络架构

摘要&#xff1a; 本文全面深入地探讨 Transformer 模型&#xff0c;这一基于自注意力机制的神经网络结构在序列数据处理领域具有开创性意义。详细阐述其架构组成、自注意力机制原理、在自然语言处理等多方面的应用&#xff0c;并提供丰富的代码示例以助力读者深入理解其实现细…

docker 安装mysql8.4.0

1、拉取mysql8.4.0镜像 docker pullmysql:8.4.0-oraclelinux8查看镜像 docker images2、新建宿主机本地目录&#xff1a;用来挂载MySQL容器所产生的数据的目录 mkdir -p /home/admin/data/mysql /home/admin/logs/mysql /home/admin/conf/mysql3、在/home/admin/conf/mysql目…

Android Studio的AI工具插件使用介绍

Android Studio的AI工具插件使用介绍 一、前言 Android Studio 的 AI 工具插件具有诸多重要作用&#xff0c;以下是一些常见的方面&#xff1a; 代码生成与自动补全 代码优化与重构 代码解读 学习与知识获取 智能搜索与资源推荐实际使用中可以添加注释&#xff0c;解读某段代…

【Python网络爬虫笔记】2-HTTP协议中网络爬虫需要的请求头和响应头内容

1 HTTP 协议整理 HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;即超文本传输协议&#xff0c;是用于从万维网&#xff08;WWW&#xff09;服务器传输超文本到本地浏览器的传送协议&#xff0c;直白点儿&#xff0c;就是浏览器和服务器之间的数据交互就是通过 HTT…

DroneCAN 最新开发进展,Andrew在Ardupilot开发者大会2024的演讲

本文是Andrew演讲的中文翻译&#xff0c;你可以直接观看视频了解演讲的全部内容&#xff0c;此演讲视频的中文版本已经发布在Ardupilot社区的Blog板块&#xff0c;你可以在 Arudpilot官网&#xff08;https://ardupilot.org) 获取该视频&#xff1a; 你也可以直接通过Bilibili链…

物料理解笔记·蓝白段子线·端子线座子焊接反了怎么处理!!!

目录 蓝白端子排线 端子线座子焊接错了怎么办 端子线如何拆线 编写不易&#xff0c;请勿搬运&#xff0c;仅供学习&#xff0c;感谢理解 蓝白端子排线 蓝白端子排线&#xff0c;这种端子线常用与编码电机的接线&#xff0c;或者在板子上通过提供段子线的接口&#xff0c;通…

BUUCTF—Reverse—GXYCTF2019-luck_guy(9)

下载附件&#xff0c;照例扔入Exeinfo PE查看信息 可执行文件&#xff0c;IDA 64位直接干 进main函数&#xff0c;F5反编译&#xff0c;看主要处理函数&#xff0c;跳转进去 查看&#xff0c;点进patch_me(v4)看看是怎么回事 这里已经相当清楚&#xff0c;逻辑就是如果你输入的…

jmeter学习(7)命令行控制

jmeter -n -t E:\IOT\test2.jmx -l E:\IOT\output\output.jtl -j E:\IOT\output\jmeter.log -e -o E:\IOT\output\report IOT下创建output 文件夹&#xff0c;jmx文件名避免中文&#xff0c;再次执行output.jtl不能有数据要删除

OpenCV 图像轮廓查找与绘制全攻略:从函数使用到实战应用详解

摘要&#xff1a;本文详细介绍了 OpenCV 中用于查找图像轮廓的 cv2.findContours() 函数以及绘制轮廓的 cv2.drawContours() 函数的使用方法。涵盖 cv2.findContours() 各参数&#xff08;如 mode 不同取值对应不同轮廓检索模式&#xff09;及返回值的详细解析&#xff0c;搭配…

智能探针技术:实现可视、可知、可诊的主动网络运维策略

网络维护的重要性 网络运维是确保网络系统稳定、高效、安全运行的关键活动。在当今这个高度依赖信息技术的时代&#xff0c;网络运维的重要性不仅体现在技术层面&#xff0c;更关乎到企业运营的方方面面。网络运维具有保障网络的稳定性、提升网络运维性能、降低企业运营成本等…

Elasticsearch集群如何实现高可用和一致性

Elasticsearch集群如何实现高可用和一致性 Elasticsearch (ES) 的高可用性是指集群在部分节点或分片出现故障时&#xff0c;仍能确保数据的持续可用和集群的稳定运行。ES 通过分片机制、主从结构、分配策略、故障恢复和分布式一致性等多种机制实现高可用。 1. 分片机制和副本…