【论文阅读】 Learning to Upsample by Learning to Sample

论文结构目录

  • 一、之前的上采样器
  • 二、DySample概述
  • 三、不同上采样器比较
  • 四、整体架构
  • 五、设计过程
    • (1)初步设计
    • (2)第一次修改
    • (3)第二次修改
    • (4)第三次修改
  • 六、DySample四种变体
  • 七、复杂性分析
  • 八、定性可视化
  • 九、对比实验分析
  • 十、DySample代码分析

在这里插入图片描述

论文地址:Liu_Learning_to_Upsample_by_Learning_to_Sample_ICCV_2023_paper.pdf
代码地址:https://github.com/tiny-smart/dysample.git

一、之前的上采样器

随着动态网络的普及,一些动态上采样器在几个任务上显示出巨大潜力。CARAFE通过动态卷积生成内容感知上采样核来对特征进行上采样。后续工作FADESAPA提出将高分辨率引导特征和低分辨率输入特征结合起来生成动态核,以便上采样过程能够受到更高分辨率结构的引导。这些动态上采样器通常结构复杂,推理时间成本高,特别是对于FADESAPA,高分辨率引导特征引入了更多的计算工作量,并缩小了它们的应用范围。

二、DySample概述

DySample是一种快速、有效且通用的动态上采样器,其主要概念是从点采样的角度来设计上采样过程,而不是传统的基于内核的动态上采样方法。DySample通过生成上采样位置而非内核,显著减少了计算资源的消耗,并且不需要定制的CUDA包。与其他动态上采样器相比,DySample在延迟(latency)、训练内存(memory)、训练时间(training time)、浮点运算次数(GFLOPs)和参数量(parameters)等方面表现出更高的效率。在本文测试DySample上采样模块的过程中,首先从一个简单的实现开始,然后通过不断调整公式和参数等逐步改进其性能。

三、不同上采样器比较

  • 该图是对不同上采样器的性能、推理速度和 GFLOPs 进行比较。
  • 圆圈大小表示 GFLOPs 成本。 通过将大小为 256×120×120 的特征图进行×2 上采样来测试推理时间。
  • 在大型室内场景 ADE20K 数据集上使用 SegFormer-B1 模型。
  • 测试平均交并比(mIoU)性能和额外增加的 GFLOPs

四、整体架构

与近期基于内核的上采样器不同,我们将上采样的本质理解为点重采样。在DySample中,有着基于动态上采样和模块设计的采样过程。其中输入特征X 、上采样特征X‘ 、生成偏移量O,原始采样网络G,采样集S

  • (a)图:采样集S由采样点生成器生成,通过网格采样函数对输入特征进行重新采样。
  • (b)图:采样集S=生成偏移量O+原始采样网络G。 上框表示具有静态范围因子的版本,其中偏移量通过线性层生成。下框描述具有动态范围因子的版本,其中先生成一个范围因子,然后用它来调制偏移量。σ表示 Sigmoid 函数。

五、设计过程

(1)初步设计

  • 变量注释:输入特征X 、上采样特征X‘ 、生成偏移量O,原始网格G,采样集S

X ′ = grid_sample ( X , S ) . (1) X' = \text{grid\_sample}(X, S).\tag{1} X=grid_sample(X,S).(1)

O = linear ( X ) , (2) O = \text{linear}(X),\tag{2} O=linear(X),(2)

S = G + O , (3) S = G + O,\tag{3} S=G+O,(3)

  • 目标检测:Faster R-CNN (DySample) : 37.9%的APFaster R-CNN (CARAFE):38.6%的AP
  • 语义分割:SegFormer-B1 (DySample) 获得了41.9%的mIoUSegFormer-B1 (CARAFE)
    42.8%的 mIoU

(2)第一次修改

  • 点和彩色掩码分别表示初始采样位置和偏移范围;
  • 本次示例,我们考虑采样四个点。

在这里插入图片描述

  • (a)在Nearest Initialization的情况下,四个偏移量共享相同的初始位置,这会导致初始采样位置分布不均匀;
  • (b)在Bilinear Initialization的情况下,我们将初始位置分开,使他们的初始采样位置分布均匀。

(3)第二次修改

我们发现,当(b)在没有偏移调制的情况下,偏移范围通常会重叠,所以在(c)中,我们局部约束偏移范围以减少重叠。

在这里插入图片描述
我们重写公式(2),通过不断实验确定静态范围因子为0.25时DySample达到最优效果
O = 0.25 × linear ( X ) (4) O = 0.25 \times \text{linear}(X) \tag{4} O=0.25×linear(X)(4)

(4)第三次修改

然而,乘以静态范围因子是重叠问题的一种软解法,这种方法无法完全解决问题。
在这里插入图片描述

最终我们引入动态范围因子,重写公式(4),并且通过不断实验确定分组卷积个数为g=4DySample达到最优效果。
O = 0.5 ⋅ sigmoid ( linear 1 ( X ) ) ⋅ linear 2 ( X ) (5) O = 0.5 \cdot \text{sigmoid}(\text{linear}_1(X)) \cdot \text{linear}_2(X) \tag{5} O=0.5sigmoid(linear1(X))linear2(X)(5)
通过第三次修改,DySample应用在Faster R-CNNSegFormer-B1 的效果超过CARAFE

六、DySample四种变体

DySample系列。根据范围因子的形式(静态/动态)和偏移生成样式(LP/PL),我们研究了四种变体:

  1. DySample:具有静态范围因子的LP风格;
  2. DySample+:具有动态范围因子的LP风格;
  3. DySample-S:具有静态范围因子的PL风格;
  4. DySample-S+:具有动态范围因子的PL风格。

其中LPPL即采样点生成器(Sampling Point Generator)中线性层和像素重排层的顺序:
在这里插入图片描述

七、复杂性分析

从图中可以就看出,DySample在延迟(latency)、训练内存(memory)、训练时间(training time)、浮点运算次数(GFLOPs)和参数量(parameters)等方面表现出更高的效率。

需要注意的是:

  • 虽然LP所需的参数比PL多,但前者更灵活,内存占用更小,推理速度更快;
  • S版本在参数和 GFLOPs 方面的成本更低,但内存占用和延迟更大,因为PL需要额外的存储。 +版本也增加了一些计算量。

八、定性可视化

在这里插入图片描述

九、对比实验分析

此处仅展示目标检测领域,该实验使用Faster R-CNNMSCOCO数据集上进行对比实验
可以看出DySample+版本在BackboneR50R101时均保持最优检测性能

十、DySample代码分析

上述代码就是公式(5)的具体实现
O = 0.5 ⋅ sigmoid ( linear 1 ( X ) ) ⋅ linear 2 ( X ) (5) O = 0.5 \cdot \text{sigmoid}(\text{linear}_1(X)) \cdot \text{linear}_2(X) \tag{5} O=0.5sigmoid(linear1(X))linear2(X)(5)

  • style 参数定义了上采样的风格(LP/PL
  • groups 参数用于分组卷积g的个数
  • dyscope 参数是用于确定是否使用动态范围因子(+
  • 此代码代表默认的第一种DySample

Ultralytics封装的YOLO系列中,DySample部署模块时的task.py如下图所示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/925941.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微积分复习笔记 Calculus Volume 2 - 3.1

The first 2 chapters of volume 2 are the same as those in volume 1. Started with Chapter 3. 3.1 Integration by Parts - Calculus Volume 2 | OpenStax

智能化图书馆导航系统方案之系统架构与核心功能设计

hello~这里是维小帮,点击文章最下方获取图书馆导航系统解决方案!如有项目需求和技术交流欢迎大家私聊我们~撒花! 针对传统图书馆在图书查找困难、座位紧张、空间导航不便方面的问题,本文深入剖析了基于高精度定位、3D建模、图书搜…

鸿蒙学习自由流转与分布式运行环境-价值与架构定义(1)

文章目录 价值与架构定义1、价值2、架构定义 随着个人设备数量越来越多,跨多个设备间的交互将成为常态。基于传统 OS 开发跨设备交互的应用程序时,需要解决设备发现、设备认证、设备连接、数据同步等技术难题,不但开发成本高,还存…

第六届机器人、智能控制与人工智能国际(RICAI 2024)

会议信息 会议时间与地点:2024年12月6-8日,中国南京 会议官网:www.ic-ricai.org (点击了解大会参会等详细内容) 会议简介 第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)将于20…

PostgreSQL WAL日志膨胀处理

作者:Digital Observer(施嘉伟) Oracle ACE Pro: Database PostgreSQL ACE Partner 11年数据库行业经验,现主要从事数据库服务工作 拥有Oracle OCM、DB2 10.1 Fundamentals、MySQL 8.0 OCP、WebLogic 12c OCA、KCP、PCTP、PCSD、P…

Windows中python3使用minio

minio.exe 和 mc.exe下载地址 # http://192.168.16.174:9000 # admin admin123!# # E:\tool\minio\bin>set MINIO_ROOT_USERadmin # E:\tool\minio\bin>set MINIO_ROOT_PASSWORDadmin123!# # E:\tool\minio\bin>minio.exe server E:\tool\minio\data# 配置minio 客户…

Flink在Linux系统上的安装与入门

一、Flink的引入 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有Hadoop、Storm,以及后来的Spark,他们都有着各自专注的应用场景。Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计…

黄仁勋:人形机器人在内,仅有三种机器人有望实现大规模生产

11月23日,芯片巨头、AI时代“卖铲人”和最大受益者、全球市值最高【英伟达】创始人兼CEO黄仁勋在香港科技大学被授予工程学荣誉博士学位;并与香港科技大学校董会主席沈向洋展开深刻对话,涉及人工智能(AI)、计算力、领导…

unity工程转为安卓使用的aar文件

1.unity导出时选择安卓平台,导出的最终工程如下: 2.将该工程导入AndroidStudio里,File->new->import project, 选择上一步导出的文件夹。导入完成如下: 3.导入进来之后,手动在下方文件夹添加string文件&#xff…

【N 卡 掉驱动 Driver 】NVML ERROR: Driver Not Loaded

问题描述 输入 nvitop 时报错 NVML ERROR: Driver Not Loaded,重启问题依旧存在。 问题解决-重新下载驱动 进入官网选择合适自己的驱动版本 https://www.nvidia.cn/geforce/drivers/ 根据个人情况搜索后,选择最新的 Driver 进行下载,如果希…

C# 索引器(Indexer)

文章目录 前言一、索引器的语法规则二、索引器的用途及与属性的对比三、索引器的重载 前言 在 C# 编程中,索引器(Indexer)是一项极具特色且实用的语言特性,它赋予了对象一种独特的访问方式,使得对象能够如同数组一般&a…

Scrapy管道设置和数据保存

1.1 介绍部分: 文字提到常用的Web框架有Django和Flask,接下来将学习一个全球范围内流行的爬虫框架Scrapy。 1.2 内容部分: Scrapy的概念、作用和工作流程 Scrapy的入门使用 Scrapy构造并发送请求 Scrapy模拟登陆 Scrapy管道的使用 Scrapy中…

Oracle SCN与时间戳的映射关系

目录 一、基本概述 二、相关操作 三、参考文档 一、基本概述 Oracle 数据库中的 SYS.SMON_SCN_TIME 表是一个关键的内部表,主要用于记录过去时间段中SCN与具体的时间戳之间的映射关系。这种映射关系可以帮助用户将 SCN 值转换为可读性更强的时间戳,从而…

Maven install java heap space

Maven install java heap space 打包报错 Maven install java heap space 解决: vm option: -Xms1024m -Xmx1024m如果 vm配置了,还是一样报错,就重新选择JRE看看是否正确,idea会默认自己的环境,导致设置vm无效&…

深度学习——激活函数

一、人工神经元 1.1 构建人工神经元 人工神经元接受多个输入信息,对它们进行加权求和,再经过激活函数处理,最后将这个结果输出。 1.2 组成部分 输入(Inputs): 代表输入数据,通常用向量表示,每…

算法基础 - 求解非线性方程(二分迭代法)

文章目录 1. 基本思想2. 编程实现2.1. 非递归2.2. 递归方案 3. 总结 二分迭代法使用了二分算法思想求解非线性方程式。 下面要求使用二分迭代法求解: 2x3-5x-10 方程式,且要求误差不能大于10e-5。 二分迭代法也只是近似求解算法。 所谓求解&#xff…

如何将 GitHub 私有仓库(private)转换为公共仓库(public)

文章目录 如何将 GitHub 私有仓库转换为公共仓库步骤 1: 登录 GitHub步骤 2: 导航到目标仓库步骤 3: 访问仓库设置步骤 4: 更改仓库可见性步骤 5: 确认更改步骤 6: 验证更改注意事项 如何将 GitHub 私有仓库转换为公共仓库 在软件开发领域,GitHub 是一个广受欢迎的…

SSM搭建(1)——配置MyBatis

目录 一、框架概述 1.什么是JDBC? 2.JDBC基本流程 3.JDBC的缺点 二、MyBatis的入门程序 1. 创建数据库和表结构 2. MyBatis入门流程总结 3. MyBatis的入门步骤 (1) 创建maven的项目,创建Java工程即可。 &…

Cesium 当前位置矩阵的获取

Cesium 位置矩阵的获取 在 3D 图形和地理信息系统(GIS)中,位置矩阵是将地理坐标(如经纬度)转换为世界坐标系的一种重要工具。Cesium 是一个强大的开源 JavaScript 库,用于创建 3D 地球和地图应用。在 Cesi…

大米中的虫子检测-检测储藏的大米中是否有虫子 支持YOLO,VOC,COCO格式标注,4070张图片的数据集

大米中的虫子检测-检测储藏的大米中是否有虫子 支持YOLO,VOC,COCO格式标注,4070张图片的数据集 数据集分割 4070总图像数 训练组 87% 3551图片 有效集 9% 362图片 测试集 4% 157图片 预处理 自动定向…