C语言学习 12(指针学习1)

一.内存和地址

1.内存

在讲内存和地址之前,我们想有个⽣活中的案例:
假设有⼀栋宿舍楼,把你放在楼⾥,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,如果想找到你,就得挨个房⼦去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:
⼀楼:101,102,103...
⼆楼:201,202,203...
...
有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。
⽣活中,每个房间有了房间号,就能提⾼效率,能快速的找到房间。
如果把上⾯的例⼦对照到计算机中,⼜是怎么样呢?
我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是 8GB/16GB/32GB 等,那这些内存空间如何⾼效的管理呢?
其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。
计算机中常⻅的单位(补充):
⼀个⽐特位可以存储⼀个2进制的位1或者0
bit - ⽐特位
Byte - 字节
KB
MB
GB
TB
PB
1Byte = 8bit
1KB = 1024Byte
1MB = 1024KB
1GB = 1024MB
1TB = 1024GB
1PB = 1024TB
其中,每个内存单元,相当于⼀个学⽣宿舍,⼀个字节空间⾥⾯能放8个⽐特位,就好⽐同学们住
的⼋⼈间,每个⼈是⼀个⽐特位。
每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号),有了这个内存单元的编
号,CPU就可以快速找到⼀个内存空间。
⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起
了新的名字叫:指针
所以我们可以理解为:内存单元的编号 == 地址 == 指针
实际电脑存储的时候,应该是下面的内存大,上面的内存小。 (由小内存向大内存存储)
2.如何理解内存的存储
CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,⽽因为内存中字节
很多,所以需要给内存进⾏编址(就如同宿舍很多,需要给宿舍编号⼀样)。
计算机中的编址,并不是把每个字节的地址记录下来,⽽是通过硬件设计完成的。
钢琴、吉他 上⾯没有写上“do、ri、mi、fa、so、la、xi”这样的信息,但演奏者照样能够准确找到每⼀个琴弦的每⼀个位置,这是为何?因为制造商已经在乐器硬件层⾯上设计好了,并且所有的演奏者都知道。本质是⼀种约定出来的共识!
硬件编址也是如此我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表⽰0,1【电脉冲有⽆】,那么⼀根线,就能表⽰2种含义,2根线就能表⽰4种含义,依次类推。32根地址,就能表⽰2^32种含义,每⼀种含义都代表⼀个地址。
地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传⼊
CPU内寄存器。
⾸先,必须理解,计算机内是有很多的硬件单元,⽽硬件单元是要互相协同⼯作的。所谓的协同,⾄少相互之间要能够进⾏数据传递。但是硬件与硬件之间是互相独⽴的,那么如何通信呢?答案很简单,⽤"线"连起来。⽽CPU和内存之间也是有⼤量的数据交互的,所以,两者必须也⽤线连起来。不过,我们今天关⼼⼀组线,叫做地址总线
二.指针变量和地址
1.取地址操作符(&)
理解了内存和地址的关系,我们再回到C语⾔,在C语⾔中创建变量其实就是向内存申请空间,⽐如:
⽐如,上述的代码就是创建了整型变量a,内存中申请4个字节,⽤于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:
那我们如何能得到a的地址呢?
这⾥就得学习⼀个操作符(&)-取地址操作符
#include <stdio.h>
int main()
{
	int a = 10;
	&a;
	printf("%p\n", &a);
	return 0;
}
  • 每运行一次,存储的地址就会发生一次改变。
按照我画图的例⼦,会打印处理:006FFD70,&a取出的是a所占4个字节中地址较⼩的字节的地
址。

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址(内存的存储是连续的,在同一个变量下),顺藤摸⽠访问到4个字节的数据也是可⾏的。
2.指针变量
那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如: 0x006FFD70 ,这个数值有时候也是需要存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是: 指针变量
比如:
#include <stdio.h>
int main()
{
	int a = 10;
	int* pa = &a; //取出a的地址,存入指针变量pa中。
	return 0;
}
指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址(所以在输入的时候,就可以不用再加&)
3.如何拆解指针类型
我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?
int a = 10;
int* pa = &a;
这⾥pa左边写的是 int* * 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int)
类型的对象。
那如果有⼀个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?
char ch = 'A';
char* pc = &ch; 

4.解引用操作符(*)

我们将地址保存起来,未来是要使⽤的,那怎么使⽤呢?
在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。
C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)
指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)
#include <stdio.h>
int main()
{
	int a = 10;
	int* pa = &a;
	*pa = 0;
	printf("%d", a);
	return 0;
}

打印结果:

上⾯代码中第5⾏就使⽤了解引⽤操作符, *pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了 ;所以*pa = 0,这个操作符是把a改成了0.
有人肯定在想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢?
其实这⾥是把a的修改交给了pa来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活,后期慢慢就能理解了。
5.指针变量的大小
前⾯的内容我们了解到,32位(bit)机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是⽤来存放地址的,那么指针变量的⼤⼩就得是4个字节的空间才可以。
同理64位(bit)机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变量的⼤⼩就是8个字节。
#include <stdio.h>
//指针变量的⼤⼩取决于地址的⼤⼩
//32位平台下地址是32个bit位(即4个字节)
//64位平台下地址是64个bit位(即8个字节)
int main()
{
	printf("%zd\n", sizeof(int*));
	printf("%zd\n", sizeof(short*));
	printf("%zd\n", sizeof(double*));
	printf("%zd\n", sizeof(char*));
	printf("%zd\n", sizeof(float*));
	return 0;
}

x64环境(16进制)打印:

x86环境(8进制)打印:
结论:
  • 32位平台下地址是32个bit位,指针变量⼤⼩是4个字节
  • 64位平台下地址是64个bit位,指针变量⼤⼩是8个字节
注意:指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的。
三.指针变量类型的意义
指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢?
其实指针类型是有特殊意义的,我们接下来继续学习。
1.指针的解引用
对⽐,下⾯2段代码,主要在调试时观察内存的变化。
代码一:
#include <stdio.h>
int main()
{
	int a = 0x11223344;
	int* pa = &a;
	*pa = 0;
	return 0;
}

第一段代码的内存改变的情况:

代码二:
#include <stdio.h>
int main()
{
	int a = 0x11223344;
	char* pa = &a;
	*pa = 0;
	return 0;
}

第二段代码内存改变情况:

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0
结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。
2.指针+-整数
先看⼀段代码,调试观察地址的变化。
#include <stdio.h>
int main()
{
	int a = 10;
	int* pa = &a;
	char* pc = &a;
	printf("%p\n", &a);
	printf("%p\n", pa);
	printf("%p\n", pc);
	printf("%p\n", pa + 1);
	printf("%p\n", pc + 1);
	return 0;
}

打印结果:

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。
这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的 元素 。指针可以+1,那也可以-1。
提醒:上面那个代码编译时会报警告,因为a是int类型,最好不要用其它指针类型(char*等)。
结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离,跳过多少个元素)。
3.void*指针
在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为⽆具体类型的指针(或者叫泛型指
针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进⾏指针的+-整数和解引⽤的运算。
举例:
#include <stdio.h>
int main()
{
	int a = 10;
	int* pa = &a;
	char* pc = &a;
	return 0;
}
在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。⽽使⽤void*类型就不会有这样的问题。
使⽤void*类型的指针接收地址:
#include <stdio.h>
int main()
{
	int a = 10;
	void* pa = &a;
	void* pc = &a;
	*pa = 0;
	*pc = 0;
	return 0;
}

VS2022编译结果:

这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。
那么 void* 类型的指针到底有什么⽤呢?
⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以
实现泛型编程的效果。使得⼀个函数来处理多种类型的数据。
四.指针运算
指针的基本运算有三种,分别是:
  • 指针+- 整数
  • 指针-指针
  • 指针的关系运算
1.指针+- 整数
因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。
int arr[10] = {1,2,3,4,5,6,7,8,9,10};

#include <stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int i = 0;
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (i = 0; i < sz; i++)
	{
		printf("%d ", *(p + i));
	}
	return 0;
}

也可以将数组里的数全改为0;

#include <stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int i = 0;
	int sz = sizeof(arr) / sizeof(arr[0]);
	for (i = 0; i < sz; i++)
	{
		*(p + i) = 0;
	}
	for (i = 0; i < sz; i++)
	{
		printf("%d ", *(p + i));
	}
	return 0;
}

当然也可以自己输入,但输入的时候就不用加&了。

反过来打印:
这里我直接用arr打印了,当然也可以用指针,但应该给一个 向后移动的指针变量。
#include <stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int i = 0;
	int sz = sizeof(arr) / sizeof(arr[0]);
	int* p = &arr[sz - 1];
	for (i = 0; i < sz; i++)
	{
		*p = i + 1;
		p--;  //指针向前遍历
	}
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

2.指针-指针

#include <stdio.h>
int main()
{
	int arr[10] = { 0 };
	int n = &arr[9] - &arr[0];
	printf("%d", n);
	return 0;
}

打印结果:

也许你会疑惑为什么不是9*4=36,因为指针-指针求的是两者之间的 元素个数(而不是字节数)
引子:
可以自己写一个函数来实现strlen的作用。
#include <stdio.h>

size_t my_strlen(char* str)
{
	int count = 0;
	while (*str != '\0')
	{
		str++;
		count++;
	}
}
int main()
{
	char arr[] = "abcdef";
	size_t len = my_strlen(arr);
	printf("%zd", len);
	return 0;
}

指针-指针形式:

#include <stdio.h>
size_t my_strlen(char* str)
{
	char* start = str;
	while (str != '\0')
	{
		str++;
	}
	return str - start;
}

int main()
{
	char arr[] = "abcdef";
	size_t len = my_strlen(arr);
	printf("%zd", len);
	return 0;
}

3.指针的关系运算

#include <stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int sz = sizeof(arr) / sizeof(arr[0]);
	while (p < arr + sz)
	{
		printf("%d ", *p);
		p++;
	}
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/923521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【pyspark学习从入门到精通19】机器学习库_2

目录 估计器 分类 回归 聚类 管道 估计器 估计器可以被看作是需要估算的统计模型&#xff0c;以便对您的观测值进行预测或分类。 如果从抽象的 Estimator 类派生&#xff0c;新模型必须实现 .fit(...) 方法&#xff0c;该方法根据在 DataFrame 中找到的数据以及一些默认或…

微服务篇-深入了解使用 RestTemplate 远程调用、Nacos 注册中心基本原理与使用、OpenFeign 的基本使用

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 认识微服务 1.1 单体架构 1.2 微服务 1.3 SpringCloud 框架 2.0 服务调用 2.1 RestTemplate 远程调用 3.0 服务注册和发现 3.1 注册中心原理 3.2 Nacos 注册中心 …

C语言解析命令行参数

原文地址&#xff1a;C语言解析命令行参数 – 无敌牛 欢迎参观我的个人博客&#xff1a;无敌牛 – 技术/著作/典籍/分享等 C语言有一个 getopt 函数&#xff0c;可以对命令行进行解析&#xff0c;下面给出一个示例&#xff0c;用的时候可以直接copy过去修改&#xff0c;很方便…

深度学习:GPT-1的MindSpore实践

GPT-1简介 GPT-1&#xff08;Generative Pre-trained Transformer&#xff09;是2018年由Open AI提出的一个结合预训练和微调的用于解决文本理解和文本生成任务的模型。它的基础是Transformer架构&#xff0c;具有如下创新点&#xff1a; NLP领域的迁移学习&#xff1a;通过最…

过滤条件包含 OR 谓词,如何进行查询优化——OceanBase SQL 优化实践

这篇博客涉及两个点&#xff0c;一个是 “OR Expansion 改写”&#xff0c;另一个是 “基于代价的改写”。 背景 在写SQL查询时&#xff0c;难以避免在过滤条件中使用 OR 谓词&#xff0c;但其往往会导致索引利用效率下降的问题 。本文将分享如何通过查询改写的2种方式进行优化…

C语言函数递归经典题型——汉诺塔问题

一.汉诺塔问题介绍 Hanoi&#xff08;汉诺&#xff09;塔问题。古代有一个梵塔&#xff0c;塔内有3个座A、B、C&#xff0c;开始时&#xff21;座上有64个盘子&#xff0c;盘子大小不等&#xff0c;大的在下&#xff0c;小的在上。有一个老和尚想把这64个盘子从&#xff21;座移…

【Python】九大经典排序算法:从入门到精通的详解(冒泡排序、选择排序、插入排序、归并排序、快速排序、堆排序、计数排序、基数排序、桶排序)

文章目录 1. 冒泡排序&#xff08;Bubble Sort&#xff09;2. 选择排序&#xff08;Selection Sort&#xff09;3. 插入排序&#xff08;Insertion Sort&#xff09;4. 归并排序&#xff08;Merge Sort&#xff09;5. 快速排序&#xff08;Quick Sort&#xff09;6. 堆排序&…

lua除法bug

故事背景&#xff0c;新来了一个数值&#xff0c;要改公式。神奇的一幕出现了&#xff0c;公式算出一个非常大的数。排查是lua有一个除法bug,1除以大数得到一个非常大的数。 function div(a, b)return tonumber(string.format("%.2f", a/b)) end print(1/73003) pri…

STM32 USART串口发送+接收

单片机学习&#xff01; 目录 前言 一、串口发送配置步骤 二、详细步骤 2.1 RCC开启USART和GPIO时钟 2.2 GPIO初始化 2.3 配置USART 2.4 开启USART 2.5 总初始化代码 三、接收数据 3.1 查询方法 3.2 中断方法 3.2.1 中断配置 3.2.2 接收函数 总结 前言 上篇博文介…

网络安全事件管理

一、背景 信息化技术的迅速发展已经极大地改变了人们的生活&#xff0c;网络安全威胁也日益多元化和复杂化。传统的网络安全防护手段难以应对当前繁杂的网络安全问题&#xff0c;构建主动防御的安全整体解决方案将更有利于防范未知的网络安全威胁。 国内外的安全事件在不断增…

AIGC--AIGC与人机协作:新的创作模式

AIGC与人机协作&#xff1a;新的创作模式 引言 人工智能生成内容&#xff08;AIGC&#xff09;正在以惊人的速度渗透到创作的各个领域。从生成文本、音乐、到图像和视频&#xff0c;AIGC使得创作过程变得更加快捷和高效。然而&#xff0c;AIGC并非完全取代了人类的创作角色&am…

【数据结构实战篇】用C语言实现你的私有队列

&#x1f3dd;️专栏&#xff1a;【数据结构实战篇】 &#x1f305;主页&#xff1a;f狐o狸x 在前面的文章中我们用C语言实现了栈的数据结构&#xff0c;本期内容我们将实现队列的数据结构 一、队列的概念 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端…

RHCSA作业

课后练习 将整个 /etc 目录下的文件全部打包并用 gzip 压缩成/back/etcback.tar.gz [rootlocalhost ~]# tar -czvf /back/etcback.tar.gz -C / etc 使当前用户永久生效的命令别名&#xff1a;写一个命令命为hello,实现的功能为每输入一次hello命令&#xff0c;就有hello&#…

java:拆箱和装箱,缓存池概念简单介绍

1.基本数据类型及其包装类&#xff1a; 举例子&#xff1a; Integer i 10; //装箱int n i; //拆箱 概念&#xff1a; 装箱就是自动将基本数据类型转换为包装器类型&#xff1b; 拆箱就是自动将包装器类型转换为基本数据类型&#xff1b; public class Main {public s…

如何选择最适合企业的ETL解决方案?

在今天的大数据时代&#xff0c;企业的数据管理和处理变得愈发重要。企业也越来越依赖于数据仓库和数据湖来提取、转换和加载&#xff08;ETL&#xff09;关键业务信息。一个高效、灵活的ETL解决方案不仅能提升数据处理能力&#xff0c;还能为企业决策提供有力支持。然而&#…

[网鼎杯 2020 朱雀组]phpweb 详细题解(反序列化绕过命令执行)

知识点: call_user_func() 函数 反序列化魔术方法 find命令查找flag 代码审计 打开题目,弹出上面的提示,是一个警告warning,而且页面每隔几秒就会刷新一次,根据warning中的信息以及信息中的时间一直在变,可以猜测是date()函数一直在被调用 查看源代码发现一些信息,但是作用…

数字图像处理(2):Verilog基础语法

&#xff08;1&#xff09;Verilog常见数据类型&#xff1a; reg型、wire型、integer型、parameter型 &#xff08;2&#xff09;Verilog 常见进制&#xff1a;二进制&#xff08;b或B&#xff09;、十进制&#xff08;d或D&#xff09;、八进制&#xff08;o或O&#xff09;、…

c++:面向对象三大特性--继承

面向对象三大特性--继承 一、继承的概念及定义&#xff08;一&#xff09;概念&#xff08;二&#xff09;继承格式1、继承方式2、格式写法3、派生类继承后访问方式的变化 &#xff08;三&#xff09;普通类继承&#xff08;四&#xff09;类模板继承 二、基类和派生类的转换&a…

数据结构 (12)串的存储实现

一、顺序存储结构 顺序存储结构是用一组连续的存储单元来存储串中的字符序列。这种存储方式类似于线性表的顺序存储结构&#xff0c;但串的存储对象仅限于字符。顺序存储结构又可以分为定长顺序存储和堆分配存储两种方式。 定长顺序存储&#xff1a; 使用静态数组存储&#xff…

在线绘制Nature Communication同款双色、四色火山图,突出感兴趣的基因

导读&#xff1a;火山图通常使用三种颜色分别表示显著上调&#xff0c;显著下调和不显著。通过为特定的数据点添加另一种颜色&#xff0c;可以创建双色或四色火山图&#xff0c;从而更直观地突出感兴趣的数据点。 《Nature Communication》文章“Molecular and functional land…