Python 网络爬虫操作指南

网络爬虫是自动化获取互联网上信息的一种工具。它广泛应用于数据采集、分析以及实现信息聚合等众多领域。本文将为你提供一个完整的Python网络爬虫操作指南,帮助你从零开始学习并实现简单的网络爬虫。我们将涵盖基本的爬虫概念、Python环境配置、常用库介绍。 

上传一个垂直爬虫框架方便大家学习https://download.csdn.net/download/vvvae1234/90026823?spm=1001.2014.3001.5503

第一部分:爬虫基础知识

1.1 什么是网络爬虫

网络爬虫(Web Crawler)是一种自动抓取网站信息的程序。不同于手动从网页上提取数据,爬虫可以高效、自动化地获取大量数据。

1.2 爬虫工作原理

  1. 发送请求:爬虫模拟浏览器发送HTTP请求到服务器。
  2. 获取响应:服务器处理请求并返回数据。
  3. 解析数据:爬虫使用解析库(如BeautifulSoup)对HTML内容进行解析和提取信息。
  4. 存储数据:将提取的数据保存到文件、数据库或其他存储系统。

1.3 爬虫的基本规范

在进行爬虫时需遵循一些基本规范,主要包括:

  • Robots.txt:许多网站会在其根目录下提供一个robots.txt文件,说明允许和禁止爬虫访问的部分。
  • 请求频率限制:为了防止给服务器带来过多负担,应设定合理的请求间隔。
  • 遵守法律法规:需确保遵循当地相关法律法规。

第二部分:环境配置

2.1 安装Python

确保你的计算机已安装Python(推荐使用Python 3.8及以上版本)。可以通过官网下载并安装:Python官网

2.2 安装必要的库

使用pip安装我们需要的库:

pip install requests beautifulsoup4
  • requests:用于发送HTTP请求。
  • beautifulsoup4:用于解析HTML和XML文档。

第三部分:爬虫实操案例

3.1 案例概述

我们将爬取一个新闻网站的标题和链接。这里以“http://news.ycombinator.com/”作为示例,该网站提供了最新的技术新闻。

3.2 编写代码

以下是一个基本的爬虫代码示例:

import requests
from bs4 import BeautifulSoup

def fetch_news():
    # 发送GET请求
    url = "https://news.ycombinator.com/"
    response = requests.get(url)

    if response.status_code == 200:
        # 解析HTML内容
        soup = BeautifulSoup(response.text, "html.parser")
        news_items = soup.find_all("a", class_="storylink")

        # 提取标题和链接
        for i, item in enumerate(news_items, start=1):
            title = item.get_text()
            link = item.get("href")
            print(f"{i}. {title}\n   链接: {link}\n")
    else:
        print("请求失败:", response.status_code)

if __name__ == "__main__":
    fetch_news()

3.3 代码详解

  1. 导入库:我们导入了requestsBeautifulSoup库。
  2. 发送请求:使用requests.get()函数发送HTTP GET请求。
  3. 检查响应状态:如果响应状态为200(OK),则表示请求成功。
  4. 解析内容:使用BeautifulSoup解析返回的HTML文档。
  5. 提取信息:通过查找所有具有特定class属性的链接(storylink)来提取新闻标题和链接。
  6. 输出结果:将新闻标题和链接打印到控制台。

3.4 运行代码

将代码保存为news_crawler.py并在终端执行:

python news_crawler.py

上传一个垂直爬虫框架方便大家学习https://download.csdn.net/download/vvvae1234/90026823?spm=1001.2014.3001.5503

第四部分:数据存储

如果要将提取的数据存储到文件中,可以使用以下代码进行修改:

def fetch_news():
    url = "https://news.ycombinator.com/"
    response = requests.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.text, "html.parser")
        news_items = soup.find_all("a", class_="storylink")

        # 存储到文件
        with open("news.txt", "w", encoding="utf-8") as f:
            for item in news_items:
                title = item.get_text()
                link = item.get("href")
                f.write(f"{title}\n链接: {link}\n\n")
        print("新闻数据已保存到 news.txt 文件。")
    else:
        print("请求失败:", response.status_code)

if __name__ == "__main__":
    fetch_news()

在这种情况下,提取的新闻将保存到news.txt中,每条新闻之间用换行分隔。

第五部分:进阶功能

5.1 添加异常处理

网络请求可能会失败,例如连接超时、404错误等。可以添加异常处理来提高代码的健壮性:

import requests
from bs4 import BeautifulSoup

def fetch_news():
    try:
        url = "https://news.ycombinator.com/"
        response = requests.get(url)
        response.raise_for_status()  # 检查请求是否成功
        
        soup = BeautifulSoup(response.text, "html.parser")
        news_items = soup.find_all("a", class_="storylink")

        for i, item in enumerate(news_items, start=1):
            title = item.get_text()
            link = item.get("href")
            print(f"{i}. {title}\n   链接: {link}\n")
            
    except requests.exceptions.RequestException as e:
        print("发生错误:", e)

if __name__ == "__main__":
    fetch_news()

5.2 增加请求间隔

在爬取多个页面时,建议添加暂停,避免过于频繁的请求:

import time

# 在循环中添加暂停
for i, item in enumerate(news_items, start=1):
    time.sleep(1)  # 添加暂停,单位为秒
    # 处理逻辑

第六部分:总结与扩展

通过本文的学习,你已经掌握了网络爬虫的基本知识、环境配置、编码示例及数据存储等操作。随着对爬虫技术的深入了解,你可以进一步探索:

  • 爬取动态网页的数据,使用Selenium库实现。
  • 存储爬取数据至数据库,如SQLite或MongoDB。
  • 实现更复杂的爬虫框架,如Scrapy。

网络爬虫是一个强大的工具,它为数据科学、商业分析等领域提供了广泛的应用可能。请务必在爬取时遵循网站的使用规则和法律法规,合法合规地使用爬虫技术。

最后上传一个垂直爬虫框架方便大家学习https://download.csdn.net/download/vvvae1234/90026823?spm=1001.2014.3001.5503

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/923255.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

免费实用在线AI工具集合 - 加菲工具

免费在线工具-加菲工具 https://orcc.online/ 在线录屏 https://orcc.online/recorder 时间戳转换 https://orcc.online/timestamp Base64 编码解码 https://orcc.online/base64 URL 编码解码 https://orcc.online/url Hash(MD5/SHA1/SHA256…) 计算 https://orcc.online/h…

五种创建k8s的configMap的方式及configmap使用

configmap介绍 Kubernetes 提供了 ConfigMap 来管理应用配置数据,将配置信息从容器镜像中解耦,使应用更灵活、可移植。 1、基于一个目录来创建ConfigMap ​ 你可以使用 kubectl create configmap 基于同一目录中的多个文件创建 ConfigMap。 当你基于目…

ssm185大学学术交流论坛+vue(论文+源码)_kaic

摘 要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势;对于大学学术交流论坛当然也不能排除在外,随着网络技术的不断成熟,带动了大学学术交流论坛的发展,它彻底…

构建 Java Web 应用程序:从 Servlet 到数据库交互(Eclipse使用JDBC连接Mysql数据库)

第 1 部分:环境设置 安装 Java Development Kit (JDK):下载并安装 JDK。设置 IDE:安装并配置 IDE(如 IntelliJ IDEA 或 Eclipse)。安装数据库:下载并安装 MySQL 数据库。配置数据库:创建数据库…

C 语言面向对象

面向对象的基本特性:封装,继承,多态 1.0 面向过程概念 当我们在编写程序时,通常采用以下步骤: 1. 将问题的解法分解成若干步骤 2. 使用函数分别实现这些步骤 3. 依次调用这些函数 这种编程风格的被称作 面向过程…

aws服务--机密数据存储KMS(1)介绍和使用

在AWS(Amazon Web Services)中存储机密数据时,安全性和合规性是最重要的考虑因素。AWS 提供了多个服务和工具,帮助用户确保数据的安全性、机密性以及合规性。AWS Secrets Manager、KMS(Key Management Service)是推荐的存储机密数据的AWS服务和最佳实践。这里先看KMS。 …

ArcGIS应用指南:ArcGIS制作局部放大地图

在地理信息系统(GIS)中,制作详细且美观的地图是一项重要的技能。地图制作不仅仅是简单地将地理数据可视化,还需要考虑地图的可读性和美观性。局部放大图是一种常见的地图设计技巧,用于展示特定区域的详细信息&#xff…

【案例学习】如何使用Minitab实现包装过程的自动化和改进

Masimo 是一家全球性的医疗技术公司,致力于开发和生产各种行业领先的监控技术,包括创新的测量、传感器和患者监护仪。在 Masimo Hospital Automation 平台的助力下,Masimo 的连接、自动化、远程医疗和远程监控解决方案正在改善医院内外的护理…

【JavaEE初阶】多线程初阶下部

文章目录 前言一、volatile关键字volatile 能保证内存可见性 二、wait 和 notify2.1 wait()方法2.2 notify()方法2.3 notifyAll()方法2.4 wait 和 sleep 的对比(面试题) 三、多线程案例单例模式 四、总结-保证线程安全的思路五、对比线程和进程总结 前言…

【小白学机器学习33】 大数定律python的 pandas.Dataframe 和 pandas.Series基础内容

目录 0 总结 0.1pd.Dataframe有一个比较麻烦琐碎的地方,就是引号 和括号 0.2 pd.Dataframe关于括号的原则 0.3 分清楚几个数据类型和对应的方法的范围 0.4 几个数据结构的构造关系 list → np.array(list) → pd.Series(np.array)/pd.Dataframe 1 python 里…

《用Python画蔡徐坤:艺术与编程的结合》

简介 大家好!今天带来一篇有趣的Python编程项目,用代码画出知名偶像蔡徐坤的形象。这个项目使用了Python的turtle库,通过简单的几何图形和精心设计的代码来展示艺术与编程的结合。 以下是完整的代码和效果介绍,快来试试看吧&…

OSG开发笔记(三十三):同时观察物体不同角度的多视图从相机技术

​若该文为原创文章,未经允许不得转载 本文章博客地址:https://blog.csdn.net/qq21497936/article/details/143932273 各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究 长沙红胖子Qt…

数据结构(Java版)第二期:包装类和泛型

目录 一、包装类 1.1. 基本类型和对应的包装类 1.2. 装箱和拆箱 1.3. 自动装箱和自动拆箱 二、泛型的概念 三、引出泛型 3.1. 语法规则 3.2. 泛型的优点 四、类型擦除 4.1. 擦除的机制 五、泛型的上界 5.1. 泛型的上界的定义 5.2. 语法规则 六、泛型方法 6.1…

ffmpeg 视频滤镜:高斯模糊-gblur

滤镜描述 gblur 官网地址 > FFmpeg Filters Documentation 这个滤镜会将视频变得模糊。 滤镜使用 参数 gblur AVOptions:sigma <float> ..FV.....T. set sigma (from 0 to 1024) (default 0.5)steps <int> ..FV.....T…

vue中路由缓存

vue中路由缓存 问题描述及截图解决思路关键代码及打印信息截图 问题描述及截图 在使用某一平台时发现当列表页码切换后点击某一卡片进入详情页后&#xff0c;再返回列表页时页面刷新了。这样用户每次看完详情回到列表页都得再重新输入自己的查询条件&#xff0c;或者切换分页到…

eclipse-git项目提示NO-HEAD

1、出现该问题的过程 本人在用eclipse拉取git代码&#xff0c;刚拉取完&#xff0c;可能还没来得及跟本地的分支合并&#xff0c;电脑就卡动了。无奈只能重启电脑&#xff0c;打开eclipse&#xff0c;maven项目后面就出现了xxx NO-HEAD的提示。 2、问题解决 根据错误提示&am…

网络安全与加密

1.Base64简单说明描述&#xff1a;Base64可以成为密码学的基石&#xff0c;非常重要。特点&#xff1a;可以将任意的二进制数据进行Base64编码结果&#xff1a;所有的数据都能被编码为并只用65个字符就能表示的文本文件。65字符&#xff1a;A~Z a~z 0~9 / 对文件进行base64编码…

goframe开发一个企业网站 在vue-next-admin 显示验证码 19

index.go 文件中的代码&#xff0c;我将为该文件中的主要功能和方法添加注释&#xff0c;并生成一篇 Markdown 格式的文章。这将包括对每个函数的用途、输入参数和返回值的简要说明。 index.go 包和导入 package adminimport ("context""errors""gf…

数据库的联合查询

数据库的联合查询 简介为什么要使⽤联合查询多表联合查询时MYSQL内部是如何进⾏计算的构造练习案例数据案例&#xff1a;⼀个完整的联合查询的过程 内连接语法⽰例 外连接语法 ⽰例⾃连接应⽤场景示例表连接练习 ⼦查询语法单⾏⼦查询多⾏⼦查询多列⼦查询在from⼦句中使⽤⼦查…

Oracle 23ai 对应windows版本安装配置PLSQL导入pde文件navicat连接Oracle

因为有一个pde文件需要查看里面的数据&#xff0c;所以这次需要配置本地oracle数据库&#xff0c;并且导入数据&#xff0c;因为还有navicat&#xff0c;所以就想用navicat去连接查看。 1、找到官网。 Get Started with Oracle Database 23ai | Oracle 2、下载windows版本。…